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Abstract—Irrigation canal networks serve as the bedrock of
agriculture sectors across the globe as they are the primary
channel through which water runs from major sources to
agricultural lands. However, the water-carrying capacity of these
water channels significantly reduces over time because of erosion,
structural deterioration, and silt accumulation. As a result,
routine inspections are required to analyze and repair these
water channels which necessitates automation because of the
vast length of the channels. We present a framework that enables
Micro-Aerial Vehicles(MAVs) not only to navigate in an unknown
cluttered canal environment but also to provide a complete 3-
Dimensional map for the inspection. The framework consists of
three main components (mapping, path planning, and mission
planner) that gradually explore the environment while solving
for start to local goal queries. We use Octomap; an octree-based
representation of the environment for mapping, and we extended
the Informed Rapidly-exploring Random Tree (Informed-RRT*)
for optimal path planning and replan paths with respect to
the static nearby and dynamic obstacles perceived during the
execution of the mission. A simulated 2,378 meters length of
canal environment is implemented and demonstrated by using
the Airsim simulation in the Unreal engine, running on Robot
Operation System (ROS) and Linux OS. Results obtained show
that the framework enables the MAV to navigate over a simulated
canal environment and allows the MAV to map the 3D structure
of the canal.

Index Terms—UAV, navigation, Mapping, Path Planning, ROS,
Unreal engine, Airsim, RRT*

I. INTRODUCTION

Water has become an inevitable global sustainability risk.
Agriculture, as the greatest water consumer, faces challenges
associated with water quality and availability. Many river
basins, including the Indus, Nile, Ganges, Yangtze, and Mis-
sissippi, rely significantly on huge canal networks. The Indus
River Basin, one of the mightiest and longest rivers, comprises
over a hundred thousand big and small channels, with the
main channel stretching for 57,000 km [1] and small channels
spanning 1.6 million Km [2]. Due to natural environmental
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changes and human factors, such as silt accumulation, flood-
ing, pollution, and water theft, the extensive infrastructure is
constantly deteriorating, resulting in the efficiency reduction of
the irrigation system. Hence, for operations and maintenance,
a frequent inspection of the structure is required. Currently,
the inspection and repair of these water channels are done
manually by human labor which results in considerable un-
certainty and inefficiencies [3]. Hence, an automated system
with sensing and navigation capabilities is required that can
traverse the length of the canal at large distances with minimal
human interventions.

Fig. 1. Main modules of the proposed framework

Several researchers have attempted to solve this problem
using robotics platforms. A small-scale aerial vehicle with per-
ception and navigation capabilities that can navigate beneath
tree canopies, avoid overhanging tree branches and bridges,
and profile canal channels quickly and efficiently could be an
option. Gadre et al. [4] report the use of an unmanned surface
vehicle to map a natural and riverine environment, however,
their system is unable to map above the canal banks and
below the canopy. Bio-inspired snake robots with autonomous
navigation [5] and waterproof design [6] can be configured to
map the level of siltations and canal structural deterioration.
Rathinam et al. [7] has used fixed-wing UAVs at higher
altitudes to map rivers or coastal lines which will not work
beneath canal canopy. This platform may be more useful in
typical riverine environments, but our goal is to develop a
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system that can operate in difficult conditions such as flowing
water, overhanging trees, or dense canal canopies. Yang et
al. [8] has used a small flying vehicle (MAV) to describe
mapping riverine environments in short distances, using a
passive monocular vision sensor for mapping and an ultrasonic
sensor for altitude estimation. However, the goal of our work
is the same, but we deliberately plan out significantly longer
missions where it is critical to profile not only the magnitude
of the canal but also the vegetation along its bank, as well as
avoid obstacles that could occur in the path of the vehicle.
Similar to our work, Scherer et al. [9] has demonstrated
autonomous exploration and mapping of riverine environments
through aerial vehicles, using a front-facing camera for river
detection, and a 2D rotating LiDAR coupled with a stereo
camera for 3D reconstruction of the river. The system has
been validated on a 2 km-long river. However, because of the
weight and computation limitations, using separate sensors for
mapping and exploration may not be a good choice for an
aerial vehicle. Abbas et al. [10] has proposed and evaluated
an aerial autonomous canal traversal system based on deep
learning techniques.

This paper addresses the challenge of autonomous navi-
gation and mapping for a Micro-aerial vehicle (MAV) that
operates in a significantly large, unknown, and cluttered canal-
like environment. We achieved it in a simulation framework,
with a front-facing stereo camera mounted on the front of the
vehicle, as the only perception sensor for both mapping and
obstacle avoidance. We used octomap [11]; an octree-based
representation for mapping, and an Informed-RRT* [12] as
path planner. We also implemented a mission planner, that
is responsible for the overall flow of the MAV autonomous
navigation. In this work, we assume that the localization of
the vehicle and the local goal points at every 25 meters over
the whole canal is known apriori.

II. BACKGROUND

A. Mission Planner

The mission planner is a high-level controller, responsible
for the overall flow of the proposed MAV autonomous navi-
gation framework over a canal. When the mission is started,
the path planning module and mission planner establishes a
bidirectional communication. Since the complete canal envi-
ronment is divided into discrete local goal points, therefore,
the mission planner, when required, requests path planning
module for obstacle-free waypoints from the MAV current
position to the subsequent local goal position, and adapts them
for the low-level control of the MAV. Additionally, the path
planning module can inform the mission planner to cancel
the ongoing waypoints when the same path is re-planned with
updated waypoints.

B. Mapping

The mapping module provides the free and occupied space
with reference to an inertial frame of reference by incre-
mentally building a representation of the environment using

information from perception sensors, such as the stereo cam-
era, which provides range information about nearby obstacles.
To process this information, we use an Octomap [11], a
hierarchical 3D octree-based representation of an environment
or space V ⊆ R3 , as shown in Figure 2. Each cube in
the octomap is called a voxel v, and can be free, occupied,
or unknown. Additionally, free voxels combine to form free
space Vfree ⊂ V , occupied voxels combine to form occu-
pied spaceVocc ⊂ V , and unknown voxels combine to form
unknown space Vun ⊂ V . Cumulatively, the three subspaces
combine to form the entire space V = Vfree ∪ Vocc ∪ Vun.

Fig. 2. Illustration of an octree storing free and occupied cells as shaded
white and black, respectively. The left picture is a volumetric model the right
one is its corresponding tree representation [11].

Octomap has three main characteristics. First, the proba-
bilistic representation of the states, which updates map in-
formation and also protect it from noisy measurements, i-
e., based on prior information of the position state, proba-
bilistically determines the new value. Second, the capability
of representing and incorporating unexplored areas, which
may be useful in the exploration of unknown environments.
Third, due to its volumetric nature, Octomap has the ability to
efficiently extend and enlarge the map as demanded. Finally,
in sampling-based methods such as the one we used in this
work i-e., Informed-RRT*, Octomap results in an effective
collision-checking method.

C. Path Planning

The path planning module provides an optimal and obstacle-
free path from the MAV’s current/start position to a goal posi-
tion while incorporating the vehicle’s kinematics and dynamics
constraints. When defining a mission, it is one of the most
important components of an autonomous navigation system.
Path planning aims to plan a real-time global path to the goal,
avoid collisions, and optimize a cost function while taking
kinodynamic constraints into account [13]. Since the MAV is
a three-dimensional vehicle that operates in R3 space (i.e., W
= R3), therefore, the configuration space C (or state space) is
expressed as Q ∈ C = SE(3) = R3 x SO(3), considering both
position and orientation of the MAV. Generally, the vehicle is
surrounded by obstacles that have to be avoided. Therefore, the
state space is further subdivided into free space Qfree ⊆ Q and
obstacles space Qobs ⊆ Q such that Q = Qfree∪Qobs. Hence, an
optimal path is defined as a continuous path p : [0, 1] → Qfree
that minimizes a given cost function while connecting p(0) =
Qstart to p(1) = Qgoal through the free space [12].



Our work is inspired by Informed-RRT* [12], which is a
variant of the RRT*. As shown in Figure 3, Informed-RRT*
works as RRT* until the first solution is obtained, then it
only tests from the sub-state set that can improve the current
solution. Because of its focused search, informed-RRT* is
less dependent on the dimension and domain of the planning
problem and has a faster ability to find improved topologically
unique paths.

(a) (b)

(c) (d)

Fig. 3. Example of the Informed-RRT* [12]. Informed RRT* works the
same as RRT* until the first solution is determined, then as shown in 3(a) it
focuses its search to only a set of states within the ellipsoid that contains the
first solution. 3(c) shows an optimal path provided by Informed-RRT*. 3(d)
shows the comparison of RRT* and Informed-RRT* in terms of their solution
cost vs computation time

III. METHODOLOGY

A. Simulation environment
In this work, the simulation framework consists of Microsoft

Airsim [14] in the Unreal Engine, coupled with the Robot
Operating System (ROS). Unreal Engine has the ability to
create 3D realistic environments with features such as water,
vegetation, rain, fog, and modeling wind. Microsoft Airsim is
a plugin developed for Unreal Engine and Unity, mainly for
aerial vehicles and cars. The aerial vehicle in the Airsim is
an AR drone that is equipped with common robotic sensors
such as LiDAR, stereo and monocular cameras, GPS, and
Inertial Measurement Unit (IMU). Apart from this, the drone
model also provides properties and parameters required for
computing rigid body dynamics such as mass, inertia, coef-
ficients for friction and restitution, coefficients for linear and
angular drag, etc. Lastly, ROS plays an important role as a
middleware communication module that allows components
to get connected and facilitates modular design.

Inspired from a real-world canal environment, where
an aerial vehicle can expect bridges, tilted trees, brushes,
branches, and trunks as obstacles, in this work, we have
modeled and included them in various locations in the en-
vironment as shown in fig. 4. Using Autodesk, the 3D canal

(a) (b)

(c) (d)

Fig. 4. Illustration of the features incorporated in the simulation environment.
(a). The magnitude of the vegetation on the canal bank, can block waterways
and may hinder the navigation of the MAV. (b). Hanging trees that can make
navigation challenging for the MAV. (c). around five bridges have been built
at different locations of the canal. (d). Fallen trees

mesh is created with the dimension of 3.5m height and 6m
to 9m width, and then extended to a closed-loop shape using
the spline tool in the Unreal engine, as shown in Figure 5.
The environment also includes sharp turns (approx. 57o) to
demonstrate either the separation of canals from the main
channel or an actual turn.

Fig. 5. The dimension and shape of the canal structure before adding any
feature

As shown in figure 6, the complete canal structure con-
sists of 2,378 meters, which contains brushes, bridges, tree
branches, and eight various types of trees as the canopy of
the canal. These various features will serve as soft and hard
obstacles for the autonomous navigation of the vehicle.

B. System Architecture

Figure 7 shows the system architecture of the proposed
framework. In this section, we have mainly discussed the
details of the two main components of our system; mapping
and path planning. As the observation sensors, we have used
a stereo camera and GPS/INS sensors for the perception of
the environment. The stereo camera provides raw images of
the left and right cameras. In the mapping module, the raw
images are calibrated and rectified to find matching points
between them and avoid the correspondence problem. Using



Fig. 6. Complete simulated environment in a closed-loop shape with a total
length of 2,378 meters. various types of trees in different orientations are
spread across the canal bank

these processed images, we find the disparity map and the
point cloud in the MAV frame of reference. In the meanwhile,
we estimate the state of the vehicle using GPS/INS sensors to
transform the 3D point cloud data from the vehicle frame of
reference to the world frame of reference in order to have a
global perspective of the environment and obstacles. After the
map is generated, the third module has to plan an obstacle-free
path for autonomous navigation. In the following subsections,
we will explain the implementation of these different modules.

Fig. 7. System Architecture of the proposed framework

1) Disparity Image and Point Cloud Generation: The first
step for disparity image and point cloud is to acquire the
left and right images from the stereo camera. A disparity
image in the context of the stereo camera is defined as the
distance between the matching pixels in the left and right
images. Several methods have been proposed in the literature
to achieve the disparity image. In this work, we have used
the block matching method, which is provided in the Stereo-
image-proc node [15] of the ROS Image Pipeline. As shown in
Figure 8, the Stereo-image-proc node subscribes to the left and
right camera information and raw images, co-calibrates and
processes the raw images, and produces the disparity image
and point cloud.

Point cloud generated from Stereo-image-proc is in the
stereo frame-of-reference. In order to have a global perspective
of the environment, especially the obstacles, we need to trans-
form the point cloud to the world frame of reference. As shown
in Figure. 9, initially the point cloud data is locally transformed
from stereo frame to the base frame (i-e vehicle frame, usually

Fig. 8. Illustration and results of the Stereo image proc. It subscribes to
the left and right image and then computes the disparity image and point
cloud

at the center of the vehicle), which is always fixed as the
vehicle is a rigid body and the stereo camera is tightly attached
to it. The point cloud from the base frame is then transformed
into a world frame. Since, the vehicle position changes at all
times, therefore, knowledge of localization is required in order
to transform. Hence, using the GPS/INS or the simulation
positional information, transform the point cloud from the base
frame to the world frame of reference.

view_frames Result

world_frame

Quad_frame

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz

Most recent transform: 1555337895.123 ( 0.100 sec old)
Buffer length: 4.770 sec

laser_frame

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz

Most recent transform: 1555337895.123 ( 0.100 sec old)
Buffer length: 4.770 sec

Stereo_centre_frame

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz

Most recent transform: 1555337895.123 ( 0.100 sec old)
Buffer length: 4.770 sec

left_image_frame

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz

Most recent transform: 1555337895.123 ( 0.100 sec old)
Buffer length: 4.770 sec

right_image_frame

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz

Most recent transform: 1555337895.123 ( 0.100 sec old)
Buffer length: 4.770 sec

Recorded at time: 1555337895.224

Fig. 9. Transformation tree from stereo camera to world coordinate system

2) 3D Mapping: As discussed in section II-B, we have
used Octomap [11] in the ROS framework to map the canal
environment. Octomap is based on octree representation of
the environment. To ensure adaptability and cope with noisy
sensor measurements, it uses probabilistic occupancy estima-
tions. Our method does not require any prior map features
to be known, instead, the map is generated dynamically over
time as the vehicle traverses the environment. As shown in
the rqt-graph of the ROS Octomap server in Figure 10, the
octomap package subscribes to the pointcloud and tf topics
and publishes the occupied cells which contains the obstacle
map. As previously discussed, the pointcloud is generated
from the left and right images of the stereo camera. tf is
a transformation channel, that publishes the transformation
between the stereo frame and to the world frame, as shown in



Fig. 10. rqt-graph of the Octomap server. It subscribes to the point cloud
of the stereo camera and the real-time transformation tf, and publishes the
occupied cells

Figure 9.

C. Path Planning

The path planner requires knowledge of the obstacles in
the environment that has to be avoided. From the mapping
module explained in section III-B2, we achieve a 3D map
representation of the environment that includes information
about the occupied (obstacles) and unoccupied (free space),
hence, we can use it to plan obstacle-free paths to navigate the
MAV over the canal. As mentioned in section II-C, our work
is inspired by Informed-RRT* [12], which is an improved
version of the famous RRT*.

We take the advantage of Flexible Collision Library(FCL)
[16] for collision checking and proximity computation, and
Open Motion Planning Library (OMPL) [17] for the imple-
mentation of Informed-RRT*.

IV. EXPERIMENTAL RESULTS

To validate our approach, we have tested the proposed
framework over the simulated canal environment in different
scenarios. In the later subsections, we have explained the
results of mapping and path planning one by one.

A. Mapping

Figure 11 shows the result of mapping the canal environ-
ment where only the occupied area is shown for clarity and
the height is visualized with color coding. Figures 11(a) is
the actual ground truth of the complete canal which has 2,378
meters of length. On the other hand, Figure 11(b) is its map
generated using the stereo camera of the AR drone in the
Unreal engine. The complete canal environment took 39.63
minutes for the vehicle to map and 184.9MB of memory is
consumed. Furthermore, the resolution of the octree during
mapping was 0.2 meters.

Figure 11(c) illustrates the simulated canal mainly with
three important features that serve as an obstacle to the
navigation of the MAV; (a) a tilted tree, (b) a bridge, and (c)
vegetation on the canal bank. From Figure 11(d) we can clearly
see that our approach has accurately sensed and mapped all
three features. Furthermore, from the results, we believe that
the proposed approach of using a Micro-aerial vehicle is able
of mapping vegetation on the canal bank, silt accumulation,
and major structural deterioration.

B. Path Planning

The role of the path planning algorithm is to provide an
optimal and obstacle-free path, from the start position of the
vehicle to the goal position, when requested by the mission

(a) (b)

(c) (d)

Fig. 11. (a) Actual ground truth of the simulated canal environment. (b) map
of the complete canal environment using our framework. (c) A close look at
the scene in the simulated canal where three important features are built at the
same location; a bridge, a fallen tree trunk, and vegetation. (d) The efficient
mapping of all the three features mentioned in d.

planner. Depending on the situation, the mission planner can
request for replanning of the path. In order to traverse and
map the complete canal, the mission planner will iteratively
request feasible paths from the path planning algorithm unless
the mission is completed. In our experiments, we performed
experiments in different scenarios based on the clutteredness
of the environment and evaluated whether our approach is
successful or failing.

1) Scenario 1: No obstacles: In this experiment, there
was no obstacle between the start and the goal point. The
expectation with the path planning algorithm was to provide a
straight path as no obstacle lies between the start and the goal
point. Hence, from Figure 12 we can see that the proposed
framework in the mapped canal environment has returned a
straight and efficient path.

Fig. 12. Illustration and result of scenario 1 where the path planning algorithm
has returned a straight path



2) Scenario 2: Hanging branches of the Tree: This scenario
represents a situation in which the vehicle faces hanging
branches of the tree as shown in Figure 13. In this scenario, the
vehicle can either navigate over the tree or find an obstacle-
free path beneath tree branches, if one exists. As shown in
Figure 13(b), the vehicle has successfully avoided the hanging
branches and reached the goal point.

(a) (b)

Fig. 13. (a) Ground truth for scenario 1 where hanging tree branches makes
the navigation of the MAV challenging. (b) the red line shows the path planned
by our framework.

3) Scenario 3: Bridge Avoidance: Bridges are perhaps the
only rigid obstacles in a canal environment that comes directly
into the heading of the MAV. It is necessary to test the behavior
of our approach in navigating over bridges. As shown in
Figure 14(a), a goal point is set beyond the bridge. In this
case, the path planner can provide a path above or under the
bridge. In our experiments, we have seen both types of paths
returned by the algorithm.

(a) (b)

Fig. 14. (a) The ground truth of the simulation scene where the MAV has to
navigate over a bridge (b) In this setup, the start and goal are set in such a
way that the bridge comes directly into the MAV’s heading, hence, the MAV
has to avoid.

4) Scenario 4: Tree Trunk Avoidance: As shown in Fig-
ure 15, another possible obstacle that can happen in the MAV
navigation during the canal mapping could be a tree trunk. In
this case, the goal point is set in such a way that the trunk lies
in the middle of the MAV and goal position and the vehicle
has to change its path and avoid it. From Figure 15(b) we can
see that the proposed framework has successfully mapped and
avoided the tree trunk.

V. CONCLUSION

In this paper, we proposed a framework in a simulated
environment for the autonomous navigation and mapping of
water channels using a Micro-Aerial Vehicle (MAV). The
complete framework consists of three main modules (mapping,

(a) (b)

Fig. 15. The actual simulated scene of the canal where the MAV has to avoid
collision with tree trunks.

path planning, and mission planner) that gradually explore the
complete canal while solving for start to local goal queries. We
use the advantage of Octomap for mapping the environment
and then implemented Informed-RRT* on the octomap to plan
obstacle-free paths. We have not assumed any feature of the
map to be known apriori for the implementation of the path
planning, instead, our path planning method provides a path
within the perception of the stereo camera mapping range
which in our case is 25 meters. Navigating and mapping the
whole canal is the responsibility of the mission planner which
assumes intermediate waypoints on the canal as local goal
points and iteratively requests the path planning algorithm
for solving the queries for each local goal point. We used
Microsoft Airsim in the Unreal engine for our simulation and
built a realistic (near to real) canal densely cluttered with
obstacles such as hanging tree branches, trunks, and bridges.
Our methods show promising results in both mapping and path
planning. Future work includes the implementation of the fron-
tier algorithm for local goals assignment, the implementation
of SLAM to localize the MAV instead of using GPS/INS, and
testing the framework on hardware.

A working demo of the framework can also be watched in
the video provided at this link https://youtu.be/Jb0h1OKiM3s
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[6] P. Liljebäck, Stavdahl, K. Y. Pettersen, and J. T. Gravdahl, “Mamba
- a waterproof snake robot with tactile sensing,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014, pp.
294–301.

[7] S. Rathinam, P. Almeida, Z. Kim, S. Jackson, A. Tinka, W. Grossman,
and R. Sengupta, “Autonomous searching and tracking of a river using
an uav,” in 2007 American Control Conference, 2007, pp. 359–364.

[8] J. Yang, D. Rao, S.-J. Chung, and S. Hutchinson, Monocular Vision
based Navigation in GPS-Denied Riverine Environments. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2011-1403

[9] S. Scherer, J. Rehder, S. Achar, H. Cover, A. D. Chambers, S. T. Nuske,
and S. Singh, “River mapping from a flying robot: state estimation, river
detection, and obstacle mapping,” Autonomous Robots, vol. 32, no. 5,
pp. 189 – 214, May 2012.

[10] S. M. Abbas, H. Ali, and A. Muhammad, “Autonomous canal
following by a micro-aerial vehicle using deep cnn,” IFAC-
PapersOnLine, vol. 52, no. 30, pp. 243–250, 2019, 6th IFAC
Conference on Sensing, Control and Automation Technologies
for Agriculture AGRICONTROL 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896319324486

[11] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in 2009 IEEE International Conference
on Robotics and Automation, May 2009, pp. 2878–2883.

[12] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 2997–
3004.

[13] J. Yang, D. Rao, S.-J. Chung, and S. Hutchinson, “Monocular vision
based navigation in gps-denied riverine environments,” AIAA Infotech
at Aerospace Conference and Exhibit 2011, 03 2011.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” CoRR, vol.
abs/1705.05065, 2017. [Online]. Available: http://arxiv.org/abs/1705.
05065

[15] J. L. Patrick Mihelich, Kurt Konolige. Stereo image proc. [Online].
Available: http://wiki.ros.org/stereo image proc

[16] Flexible collision library. [Online]. Available: https://
flexible-collision-library.github.io/

[17] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics Automation Magazine, vol. 19, no. 4, pp. 72–82,
2012.

https://arc.aiaa.org/doi/abs/10.2514/6.2011-1403
https://www.sciencedirect.com/science/article/pii/S2405896319324486
https://www.sciencedirect.com/science/article/pii/S2405896319324486
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
http://wiki.ros.org/stereo_image_proc
https://flexible-collision-library.github.io/
https://flexible-collision-library.github.io/

	Introduction
	Background
	Mission Planner
	Mapping
	Path Planning

	Methodology
	Simulation environment
	System Architecture
	Disparity Image and Point Cloud Generation
	3D Mapping

	Path Planning

	Experimental Results
	Mapping
	Path Planning
	Scenario 1: No obstacles
	Scenario 2: Hanging branches of the Tree
	Scenario 3: Bridge Avoidance
	Scenario 4: Tree Trunk Avoidance


	Conclusion
	Acknowledgement
	References

