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Abstract

For optimal agriculture yields, the land designated for agriculture requires proper
irrigation. The major part of Pakistan’s irrigation system is served through canals
that are outflows of dams, barrages, and rivers. The total length of the irrigating
canal network in the Indus Basin is about 57,000 kilometers[47]. The manual labor for
inspecting and analyzing the condition of water canals and then repairing during the
closure period each year cannot be possible by laborious manual inspection. Hence,
there is a need for automation in inspection tasks related to the water channels.

The capability of moving robots in accomplishing desired tasks with the help of a
couple of sensors mounted on them, not only decreases computation time but guaran-
tees task completion as well. To be able to use robots for canal-like environments, one
requirement is obstacle avoidance. We have developed a near to real canal environ-
ment in the Unreal engine, with real textures of trees, brushes, and bridges. Various
conceivable obstacles that an aerial vehicle can confront in a canal-like environment
is added in the simulation.

Robot Operating System (ROS)[10] plays an important role in the simulation as
it offers methods and groups of useful libraries (libraries for frame transformations,
point cloud processing, visualization, and data monitoring to name a few). The Airsim
plugin[55] in the Unreal engine[11] is used to simulate the MAV in the canal. We used
Stereo image Proc[9] for disparity and point cloud construction, Octomap server[61]
for Octomap Mapping, Informed RRT *[31] for path planning, and Airsim Simple
F lightController[55] for vehicle control.

The vehicle is capable of profiling the canal channels quickly and effectively that
will assist the human operator in surveying the canal during an annual canal closure.
The developed system autonomously flies over the canal, not only build a three-
dimensional map of the canal environment but detects obstacles in the path of the
vehicle and eventually avoid these obstacles.
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Chapter 1

Introduction

Applications and uses of UAVs (Unmanned Aerial Vehicles), also colloquially known

as drones, are drawing a lot of interest in the recent years. UAVs have potential to

bring revolution in various fields like logistics, agriculture and defense, to name a

few. However, a number of research works are still needed to realize robust, smart,

and truly autonomous UAVs. Some of these challenges are concerned with obstacle

avoidance and autonomous navigation.

Given the recent innovation and research outcomes in navigation and path plan-

ning, this thesis explores opportunities to enable and improve functionalities in UAVs

using state-of-the-art techniques.

1.1 Motivation

Agriculture is Pakistan’s largest sector of the economy and seventy percent of Pak-

istan’s population is mainly dependent on agriculture. Agricultural land needs to

be efficiently and effectively irrigated for optimal agriculture yield. The total length

of the irrigating canal network is about 57, 000 kilometers which is approximately

equivalent to the one and a half of the equatorial circumference of Earth [47]. Due

to improper water management, the water table rose, resulting in waterlogging and

salinity and about 25% of the irrigating area of Pakistan is being affected by it. The

manual labor for inspecting and analyzing the condition of water canals and then

1



repairing during the closure period each year cannot be possible by laborious manual

inspection.

Different groups have tried to use different robotics platforms to solve this problem.

One such robot could be a small scale Micro-aerial Vehicle (MAV), that has the

capability of flying in the 3D environment and navigate across overhanging trees and

other possible obstacles in the canal like environment. A vehicle equipped with a

3D perception system capable of profiling the canal channels quickly and effectively,

to assist the human operator in surveying the canal, during an annual canal closure

period, avoiding collision with the tree branches, bridges, and other possible obstacles.

Another avenue where this system could be of use in the canal-like environment

is that it can recover a floating sensor. The sensor is developed in our lab at the

center for water informatics (WIT) that spatially monitors water quality [15]. After

the sensor is released in a canal, it is difficult for a human to recover. Since this aerial

platform is able to avoid any obstacle in the canal environment so it is possible to

recover the float via this system using a robotic arm mounted on the vehicle.

Figure 1-1: Mobile water quality monitoring sensor developed at Center for Water
Informatics (WIT) [15]

1.2 Problem Statement

This thesis mainly focuses on the problem of avoiding obstacles in a 3D, cluttered,

unknown environment with a Micro-aerial vehicle MAV. The idea is to develop a flying

autonomous aerial vehicle equipped with high-resolution cameras and other sensors



that not only build a 3D map of the canal environment but also detect obstacles in

the path of drone and eventually avoid these obstacles.

1.3 Related Work

The use of MAVs in an outdoor cluttered environment such as water channels is

an active research topic with rising popularity. Multiple research groups use Micro-

aerial vehicles MAVs to obtain an overview of the water channel geometry. Others

have tried small boats, lightweight inflatable craft [30], but their systems are unable to

map the area below the canopy and above the canal banks, if the mapping sensors are

mounted at a certain altitude, the probability of collisions with the lower hanging tree

branches increases, and the vehicle will not be able to navigate the canal’s cluttered

area. On the other side, fixed-wing UAVs at higher altitudes [48] are unable to map

the area under the canal canopy, since they are mapping from higher altitudes. In

simple riverine environments, this platform could be more practical but our goal is

to build a system capable of performing in the most problematic situations such as

flowing water, blocked rivers or dense canopies of the canals. Preliminary work in

canal mapping on small multirotor using passive vision and ultrasonic sensors (for

altitude estimation) has been described over short distances [63]. Our work is in

the same way motivated but we explicitly deliberate substantially longer missions in

which it is important to not only map the magnitude of the river but also to map the

vegetation along the bank of the canal and avoid obstacles that might appear in the

middle of the canal. We focused on autonomous exploration, where onboard sensors

perceive the environment and the vehicle plans obstacle-free routes that navigate

the vehicle along the canal and perform the mapping. Similar work for autonomous

river mapping and exploration through an aerial vehicle is presented by [52], where

a separate frontal looking camera is used for river bank detection and a 2D LiDAR

with a rotating mechanism and stereo camera is used to compute the 3D structure of

the river. The system is tested on a 2km long river. However, because of having two

separate sensors for mapping and exploration requires more computations, memory,



and power.

We achieve this with simulating a stereo camera and a 2D laser scanner being the

perception sensors for local obstacle avoidance to navigate over the canal. However,

any prior information is not being used, except local goal points from the GPS, and we

rely on our local sensors for path planning and collision avoidance. The stereo camera

in our setup serves as a primary observation sensor for 3D obstacle avoidance and

mapping of the canal, LiDAR on the other hand, add some belief in the occupancy

of stereo detection in the 2D LiDAR scan around the MAV.

The focus of this thesis is Obstacle avoidance, path planning, and Mapping for a

flying platform. We will discuss the related work in each of these areas one-by-one in

detail.

1.3.1 Related Work on Obstacle Avoidance

Obstacle avoidance is a crucial capability for a Micro-aerial Vehicle (MAV) to ma-

neuver close to the trees present at low altitude. The implementation of a robust

collision avoidance system, also known as an anti-collision system, is a big challenge

to take for greater autonomy at the moment. It allows for new applications and re-

duces the pilots’ skill requirements. That is why collision avoidance is a research and

development area of interest.

Scherer [53] and Achtelika [14] uses laser scanners to detect obstacles. Gronzka

et al. ([33], [34]), who uses multilevel SLAM with motion and altitude estimation for

3D mapping, positioning, and navigation, has extended this approach. Their imple-

mentation is based on the Mikrokopter and is capable of independent flight [6]. The

Mikrokopter project began as an open-source platform but is now commercially avail-

able. Nevertheless, owing to its technical strain, data processing is not done on-board,

but on an external laptop. Another SLAM algorithm was developed by Blösch [19]

which also requires external hardware for data processing. Shen [56] combined a laser

scanner with a camera for position estimation using the closest iterative point (ICP)

algorithm and an extended Kalman filter (EKF) for data fusion. Only with on-board

equipment, his system is capable of autonomous flight and needs a 1.6 GHz Atom for



data processing. Weiss [60] is using the same system as an AscTec Pelican quadrotor

[1]. He has developed a SLAM algorithm, which includes only the on-board camera

for positioning and flight autonomy. Engel et al. ([27], [26]) introduced an EKF-

based algorithm that exploits the identification of features. His approach empowers

the parrot quadrocopter [8] to fly through 3D figures autonomously. Though, it also

requires an external laptop for processing image data. Celik [23] used a monocular

camera and US sensors to present a SLAM-based system. Gaurav et al. [38] did

experiments with optical flow for obstacle avoidance, however, a stereo vision camera

was also used to avoid collisions from straight onward zero-flow regions. Andert et al.

[16] used evidential grid-based filtering with stereo image processing, to create a map

based on stereo imagery that reactively avoided obstacles in simulation. Viquerat

et al. [59] offered a reactive method of avoiding obstacles based on Doppler radar.

Grzonka et al. [32] presented a multirotor that has the capability of simultaneous

localization and mapping (SLAM).

Becker and Bouabdallah [18] and Bouabdallah et al. ([20], [21]) used four Ul-

trasonic sensors to detect obstacles and a camera system for positioning based on

overground optical flow calculations. By controlling its position, the system is able

to avoid collisions; however, it can not cover 360 ° or control the distance and it is

also not applicable in avoiding obstacles in a canal-like environment. In comparison,

when moving in the opposite direction, Roberts [50] uses four IR sensors and avoids

collisions.

In contrast to these solutions, our system uses a stereo camera to capture the

3D-environment, generate a point cloud from the disparity images, and determine

occupied and unoccupied space through Octomap mapping. The system can suc-

cessfully detect an obstacle in the range of 25 meters and has the capability of both

obstacle avoidance and mapping simultaneously, without the constraints of a heavy

processor for computation.



1.3.2 Related Work on Path Planning

Unmanned aerial vehicle (UAV) 3D path planning aims to find an optimal and

collision-free path in a cluttered 3D environment, taking into account geometric,

physical and temporal constraints. It is the crucial element of the whole system when

defining a mission. In general, path planning attempts to produce a global path to

the target in real-time, avoid collisions and minimize a given cost function under

kinodynamic constraints [65]. There is great potential for path planning in 3D en-

vironments, but the difficulties increase exponentially with dynamic and kinematic

constraints becoming much more complex as compared to 2D path planning [65].

A few approaches are being developed over the past decades to address these

problems. Algorithms applied in 3D environments include Visibility Graph [54] de-

veloped from computer science; random search algorithms such as Rapidly Exploring

Random Tree [64] and Probabilistic Roadmap [62]; optimal search algorithms such

as Dijkstra’s [17], A* [25], and D* [22]; bio-inspired planning algorithms and etc.

The problem of motion-planning is often overcome either by first discretizing the

continuous state space with a graph-based search grid or by sampling stochastic

incremental searches. Graph-based searches, such as A* [36], are usually optimal

resolution and full resolution. They are guaranteed to find the optimum solution, if

a solution exists, and otherwise return failure (up to the discretization resolution).

Such graph-based algorithms do not scale well with problem size (e.g., problem scope

state dimension).

Stochastic searches, such as Rapidly Exploring Random Trees RRTs [43], Prob-

abilistic Roadmap PRMs [41], and Expansive-Spaces Tree ESTs [39], use sampling-

based approaches to ignore the need for state-space flexibility. It helps them to easily

scale with the size of the problem and to consider kinodynamic constraints explicitly,

but the result is a less rigorous guarantee of completeness. Probabilistically RRT’s are

complete, offering the likelihood of finding an effective solution if one is in existence,

as iterations reach infinity, approach unity [31].

To date, these sampling-based algorithms have not made any predictions about



the solution’s optimality. Simmons [58] found that using a heuristic sampling to bias

improved RRT solutions, but did not measure the results formally. Ferguson [29]

understood that the length of a solution limits potential improvements from above

and showed an iterative anytime RRT approach to solve a variety of progressively

smaller planning problems. Karaman [40] later showed that RRTs return to a sub-

optimal path with a single possibility showing that any RRT-based path can almost

definitely be suboptimal and present a new class of optimal planners. Both opti-

mal forms have been identified separately from RRTs and PRMs, RRT* and PRM*.

Such algorithms are shown to be asymptotically optimal, with the chance to find the

optimum resolution reaching unity as infinity approaches the variety of iterations.

RRTs are not asymptotically optimal because future expansion is biased by the

existing state graph. By introducing incremental rewiring of the graph, RRT* over-

comes this [31]. Not only are new states added to a tree, but they are also considered

to substitute parents for existing nearby tree states. This results in an algorithm

with uniform global sampling that finds the optimal solution to the planning problem

asymptotically by finding the optimal paths from the initial state to each state in the

problem domain asymptotically. This becomes costly in high dimensions and is also

inconsistent with their single-query nature.

A group of researcher at CMU [31] looked at the asymptotic behavior of RRT*

and presented another version of the RRT-based algorithm, called Informed RRT*.

Informed RRT* functions as RRT* until a first solution is found, after which it can

only test from the sub-state set specified by an admissible heuristic to boost the

solution. It is an improved version of RRT* that shows a clear improvement. When

the configuration becomes more complex, it demonstrates huge improvements. The

algorithm is less reliant on the dimension and domain of the planning problem as well

as the ability to find improved topologically distinct paths faster as a result of its

focused search. It is also able to find solutions with comparable computation within

tighter tolerances of the optimum than RRT*, and in the absence of obstacles, the

optimum solution can be found within system zero in the end time. It could also be

used to further reduce the search space in conjunction with other algorithms, such as



path smoothing.

In this thesis, we have implemented Informed RRT* because it is the most ap-

propriate planner according to our requirements. Mostly there are no obstacles in

the path of the canal so we need a planner to give us a straight path towards the

next goal point and Informed RRT* successfully does this. The algorithm returns a

smooth path from start to goal point avoiding all obstacles, in almost every situation

if one exists, as discussed later in Chapter 5.

1.3.3 Related Work on Mapping

In order to observe the surrounding environment, different types of map generation

methods can be used. Using a grid of cubic volumes of equal size (voxels) to discrete

the modeled area is a popular approach to 3D modeling environments. Using such a

model, Roth-Tabak and Jain [51] and Moravec [44] introduced early works. A large

memory requirement is a major drawback of rigid grids. The grid map needs to be

configured in such a way that it is at least as large as the mapped area bounding

box, regardless of the actual map cell distribution in the region. Memory consump-

tion becomes prohibitive in large outdoor scenarios or when there is a need for fine

resolutions.

Using point clouds can avoid discretization of the environment. The endpoints

returned by vision sensors such as laser range finders or stereo cameras are used in

these maps to model the space occupied in the region. Several 3D SLAM models such

as [24], [45] used point clouds. The disadvantages of this approach are that there is no

modeling of free space and unknown areas and that sensor noise or dynamic objects

can not be dealt with directly. Point clouds are therefore only suitable for sensors

with high precision. In addition, this representation’s memory consumption increases

with the number of measurements. This is troublesome because the upper bound is

not there [61].

If it is possible to make some assumptions about the mapped area, 2.5D maps will

be enough to construct the environment. A 2D grid is usually used to store the height

measured for each cell. It results in an elevation map in its most basic form where



precisely one value per cell is retained by the map [37]. However, elevation maps are

limited to one layer and are not capable of modeling bridges, underpasses, tunnels

or structures on multiple levels. This strict assumption can be relaxed by allowing

multiple surfaces per cell [57] or by using cell classes that match different structure

types [35].

In several previous methods, tree-based representations such as octrees were used.

By delaying the initialization of map volumes until measurements need to be inte-

grated they avoid one of the main drawbacks in grid systems. The mapped area does

not need to be defined in advance in this manner.

Fairfield [28] have suggested an octree-based 3D map representation. Their map

structure called Deferred Reference Counting Octree is designed to enable efficient

map updates and copying, especially in the SLAM particle filter context. However,

his method does not address multiresolution queries. Yguel [66] provided a 3D map

based on the data structure of the Haar wavelet. It’s also a multi-resolution and

probabilistic representation. However, methods of 3D modeling were not analyzed

in-depth by the authors. Unknown regions are not modeled in their analysis, and

only one virtual 3D dataset is used. It is difficult to evaluate whether this map

structure is as memory-efficient as octrees.

Finally, to the best of our knowledge, no implementation of a 3D mapping system

that resolves all the previous issues is available except the method described in [61]

and we choose this method to implement on our system.





Chapter 2

Sensors

Unlike cars that can carry heavy payloads and sensors, aerial vehicle have limitations

on the size and weight of the sensors with which they can fly. So, the first step was to

select the sensors for obstacles avoidance and mapping. There are many models and

types of obstacle avoidance sensors. For the purpose of this thesis, following sensors

were selected:

• ZED Stereo camera [13]

• Hokuyo UTM-30LX LiDAR [5]

Although in this thesis, we did not exclusively use hardware, however, the sensors

in simulation have exactly the same properties and behavior as the sensors mentioned

in this chapter.

Hokuyo LiDAR and ZED stereo camera are compact and lightweight and is ideal

sensors for an aerial vehicle. The stereo camera provides the depth information of the

3D-world through which we can map and percept the actual environment and avoid

obstacles. Since Stereo camera has lightening and other certain restrictions, LiDAR,

on the other hand, solves this problem and adds a certain probability in the detection

of stereo camera. The area around the geometric description of the vehicle up to a

certain range is covered by both Stereo camera and LiDAR, which greatly reduces

the probability of collision.
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This work assumes that both lenses of stereo camera are perfectly aligned with

zero radial and tangential distortion.

2.1 Stereo Camera

With two lenses about the same distance apart, the stereo camera takes two images

at the same time. This actually simulates the way humans see and therefore creates

the 3D effect.

2.1.1 Stereo Camera Model

The stereo camera takes two images by the left and right camera at the same time

to achieve depth information. The cameras are placed on the same plane, and their

images overlap. The distance to any object can be determined by calculating the

difference between the location or coordinates of an object as it appears in the two

images. Knowing the focal length of the cameras and the baseline between the two

lenses, this calculation can be achieved by using similar triangles. The closer an ob-

ject is to the camera’s location, the larger the deviation in its location in the two

images. If an object point lies in both left and right images, two three-dimensional

Figure 2-1: Stereo vision camera geometry [15]



rays can be projected back, joining the center of the camera, present in the three-

dimensional world frame and the respective identical pixel points in the left and right

image. The actual three-dimensional point in front of the camera is determined via

the intersection of both of the rays at a common pixel point P. To obtain the three-

dimensional position of an object, knowing camera parameters (i-e process for camera

calibration) and the positions of matching pixels points (i-e matching process of the

stereo camera) in both of the left and the right image.

2.1.2 Stereo Disparity Computation

The translation along the x-axis between the corresponding pixels point of the left

and right image of a stereo camera is termed as disparity. If this process is performed

pixel-wise for the entire image, then it is called the disparity image or disparity map.

Inspired by the human binocular vision system, computer vision algorithms are used

on a stereo vision camera to find depth. It relies on the two calibrated parallel images

of stereo pair and calculates depth by estimating disparities between the two images.

Figure 2-2: Stereo camera disparity image computation [46]

From Fig.2.2, we can see that

4PQCL = 4CLMIL, (2.1)



and

4PQCR = 4CRNIR. (2.2)

From Eq.(2.1), we know that

Z

f
=
CLQ

ILM
, (2.3)

and from Eq.(2.2)

Z

f
=
CRQ

IRM
, (2.4)

From Fig.2.2, it is clear that

B = CLQ− CRQ. (2.5)

From Eq.(2.3) and Eq.(2.4), rewriting Eq.(2.5)

B =
Z

f
(ILM − IRM). (2.6)

From the definition of disparity

d = (ILM − IRM). (2.7)

Hence, Eq. (2.6) becomes,

B =
Z

f
d. (2.8)

Z =
fB

d
. (2.9)

Equation (2.8) shows, if we know the focal length, baseline between the two cameras of



the stereo pair, and disparity values, the depth information can easily be found. The

above discussion is applicable for pixel-wise depth computation. Different algorithms

are developed to find the disparity of a block contains many pixels. One such method

is explained below.

2.1.3 Stereo Block Matching

A customary block-matching stereo set-up produces depth estimates by finding pixel-

block matches between two images. Given a pixel-block within the left image, for

instance, the system can search through the epipolar line to seek out the most effective

match. The position of the match relative to its coordinate on the left picture, or

the inequality, permits the user to work out the 3D position of the object in this

pixel-block. One will consider a customary block-matching stereo vision system as an

exploration through depth. As we tend to search on the epipolar line for a component

cluster that matches our candidate block, we tend to area unit exploring the area

of distance aloof from the cameras. For instance, given a pixel-block within the

left image, we would begin exploring through the dextral image with an outsized

inequality, correlated with an object on the point of the cameras. As we tend to

decrease inequality (changing wherever within the right image are searching), we tend

to examine pixel-blocks that correspond to things more and more away, till reaching

zero inequality, wherever the stereo base distance is unimportant in contrast to space

away and that we can’t confirm the obstacle’s location.

The concept behind block matching is to distribute the target image into blocks

of mounted size and search the correlated block that is the best match within the

right image. The problem with mounting size blocks is that their boundaries do not

coincide with the object boundaries leading to higher prediction errors. By reducing

the size of blocks, estimations errors are often reduced however; the ensuing matching

is not good. On the opposite hand, by increasing the block size, hardiness is raised

against noise in inequality calculation however, the magnitude of estimation error

becomes high. As a result of these issues, some adaptational window block matching

algorithms are suggested.



2.1.4 ZED Stereo Camera

The ZED [13] stereo camera is among state-of-the-art, developed by Stereolab. It

requires NVIDIA graphics card with computation capability greater than 3.0 and

CUDA (6.5 and above) to do millions of parallel computations. Unlike many other

existing three-dimensional sensors, which provide a maximum range of up to Four

meters, this camera has the capability of capturing objects up to 20 meters apart at

a resolution of 1080 pixels. It is a lightweight and low-price perception sensor, that

is mostly used in autonomous drones for 3D obstacle avoidance.

Technical Specifications

ZED is a passive Stereo camera that computes inputs in the manner of human vision.

It is a compliant Universal Video Class UVC, presuming the ZED-SDK is not required

to capture the camera’s left and right video streams. However, CUDA is required in

the GPU of the host computer to compute depth maps in actual-time and to use

ZED-SDK to build applications. The technical requirements are described below.

Video

The two images of the stereo camera are synchronized, compressed, and sent as a

single side-by-side video structure. The resolution of the ZED stereo camera can be

easily changed using API and ZED explorer. The ZED video available outputs at

different FPS and resolution is shown in Table.2.1.

Mode of the video FPS Output
2.2K 15 4416x1242
1080p 30 3840x1080
720p 60 2560x720

WVGA 100 1344x376

Table 2.1: Video Output specifications provided by ZED stereo camera [13]

Depth

The ZED camera computes the depth the way our binocular vision works. Horizon-

tally separated by approx. 65mm on average [3], the left and the right human eye



Figure 2-3: Image output of ZED stereo camera [13]

have a slightly different perception of the environment around them. By comparing

these two different perceptions, the human brain can infer the depth as well as the

3D motion. Similarly, the ZED has two eyes in the form of lenses, separated by 20cm,

captures HD 3D video of the environment and then estimates the depth and motion

by comparing pixels difference in the left and right images.

For each pixel, the ZED stores a depth value (Z). The depth is measured in meters

and calculated from the left lens of the camera to the object in the environment. The

depth map is encoded in 32 bits, due to which it cannot be displayed directly.(Fig.2.4)

Size and Weight

The camera dimension is 175x30x33 (mm) and it weighs 159g.

Lens

The ZED stereo camera has a wide-angle, dual-lens with reduced distortions and f/2.0

aperture. The Field of View (FOV) of the camera is 110-degree max.

Coordinate System

To specify positions and orientations, the ZED camera uses a 3D Cartesian coordinate

system (X, Y, Z). The coordinate system can be either left-handed or right-handed.

By default, the ZED uses an image coordinate system that is right-handed with the



Figure 2-4: ZED Stereo Camera depth visualization [13]

X-axis pointing right, the positive Y-axis pointing down and the Z-axis pointing out-

ward direction from the camera

Sensors

With large 2-micron pixels, the ZED sensor resolution is 4 Mega Pixels. It also has

electronic synchronized Rolling Shutter.

Connectivity

For the best performance, ZED supports USB 3.0. Also, it is powered via USB

(8V/380 mA).

2.2 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) measures the distance to an object by calcu-

lating the time of flight of a pulse needed to travel to an object and reflecting back

to the sensor. They usually work in the near-infrared spectrum and some can work

outdoors at ranges varying from a few meters to several hundred meters.

A LiDAR can measure a single point (i-e., 1D LiDAR) as shown in Fig.2.6(a), a

plane of points (i-e., 2D LiDAR) shown in Fig.2.6(b), or measure multiple planes to

scan the complete environment area around it (i-e., 3D LiDAR) shown in Fig.2.6(c).



Figure 2-5: Hardware set-up for a pulsed LIDAR flight [15]

The one-dimensional can be useful in detecting a frontal plane but can not be used

for navigation purposes, while a two-dimensional LiDAR, because it covers the en-

tire plane can be used for the navigation of ground robots with certain limitations

as it can not infer any information above and below the LiDAR scan. The three-

dimensional LiDAR, has the capability of analyzing the environment both vertically

and horizontally at the same time. Since aerial vehicle moves in the 3D world so the

ideal sensor for navigation in a 3D environment would be 3D LiDAR but because of

its heavyweight and high cost one can not use it for aerial vehicle navigation. The

LiDAR works by continuously rotating a laser beam around the scan area and then

reading the returned signal reflected from the obstacles. The output is generated in

the form of a polar coordinate that contains range values and angle at which those

ranges returned. Range values are the distance between the sensor and the object or

obstacle at which the laser beam is reflected.

Figure 2-6: 1D, 2D and 3D LIDARs [67]



2.2.1 Hokuyo UTM-30LX LiDAR

Hokuyo UTM-30LX [5] is used in this research. It has a 240o FOV and about 0.36o

angular resolution. The range of Hokuyo UTM-30LX ranges from zero to 30 meters.

With increasing range, the width of the cone grows. It operates at 10 HZ and collects

data in sweeps, each with N laser measurements. This LiDAR can not provide any

information about the intensity of the pulses. A range measurement ri at angular

measurement φi in ith laser measurement can be found as

Li =

ri
φi

 , i = 1, ....., N.

For mapping applications, the whole FOV is not required as measurements provide

information when hitting the object. Hence, the FOV can be taken limited to [min,

max]. The range and bearing data from the LiDAR can be transformed into Cartesian

coordinate by the following relation,Xi

Yi

 =

ri cos(φi)

ri sin(φi)

 , i = 1, ....., N.

2.3 Stereo vs LiDAR Comparison

Stereo vision camera and LiDAR are both used in autonomous vehicles, obstacle

detection and collision avoidance. The main differences between both the sensors

are summed up in Table.4. From the table, we can see that, the pros of one sensor

are actually the cons of the other and vice versa. Like the stereo camera cannot

directly observe obstacles while the LiDAR does. Similarly, LiDAR operates at a

low frequency while the stereo camera can operates at high frequency. Hence, to

have an enrich and robust obstacle avoidance system, both of the sensors should be

incorporated.



Stereo-Vision Camera LiDAR
Pros: High Resolution Directly Observes Obstacles

High Frequency Large Horizontal FOV
Inexpensive Easier to Simulate
Covers 3D environment Do not Require external Lighting

Cons:
Cannot Directly Observe Obsta-
cles

Low Resolution

Generally Small Horizontal FOV Low Frequency
Difficult to Simulate Expensive

Requires external Lighting
Obstacles above or below the scan-
ning plane are invisible

Table 2.2: Comparison between Stereo camera and LiDAR





Chapter 3

Simulation Environment

This chapter [49] describes the simulation environment and tools for performing ex-

periments with the algorithm described in Chapter 4. To implement the mapping

and obstacle avoidance, a robotic platform was needed. A setup to simulate a 3D

environment and a drone with a stereo camera, LiDAR and other sensors had to be

built. A system that can be easily configured to operate with a real sensor and a real

drone rather than a simulated one, if needed.

It was clear from the outset that ROS (Robot Operating System) [10] would play

a role in this simulation environment, mainly because it provides a decentralized com-

munication middleware and provides an infrastructure that allows components to be

easily connected and facilitates the modular design. It also offers methods and groups

of useful libraries (libraries for frame transformations, point cloud processing, visual-

ization, and data monitoring to name a few). Besides that, ROS is well established

in the robotic community and we have had previous experience with it.

A simulator is the core part of the simulation process. The main requirement

was the simulator’s ability to simulate a 3D environment. Two simulator candidates

Unreal Engine [11] and V-REP [12], are considered and compared. The next section

briefly characterizes both. The intended objectives of this thesis are achieved with

both of the simulation platforms. The 3D environment in the Unreal engine is more

realistic than in V-REP, hence the Unreal engine is chosen.

23



3.1 V-REP Simulation Platform

V-REP is a simulator of robotic systems designed around a versatile architecture

that is adaptive. V-REP has various relatively independent functions, features or

more elaborate APIs, which can be activated or deactivated as desired. A distributed

control architecture is obtained by enabling an integrated development environment:

each object/model can be managed individually via an embedded script, a plugin, a

ROS node, a remote API server, or a custom solution. In C / C++, Python, Java,

Lua, Matlab, Octave or Urbi, controllers can be written.

V-REP encapsulates several calculation modules that can work directly on one or

more items in the scene. Such modules for calculation include,

• the module for collision detection,

• the module for minimum distance calculation,

• the module for forward and inverse kinematics calculation,

• the module for physics or dynamics,

• the module for path or motion planning.

V-REP is easy to use. It has a rich graphical user interface. The GUI and the built-

in scripting feature have two ways to modify the simulation’s different aspects. V-REP

includes many features and computing modules, most of which are programmatically

accessible. Nonetheless, the API is inspired by V-REP’s GUI design and the user

needs to manipulate objects in the GUI in a very similar manner.

3.1.1 Simulation Environment Build in V-REP

Initially, we start working on building our canal simulation environment in the V-REP

physics engine. As shown in Fig.(3.2), (3.3), and (3.4), the total length of the canal

was about 1 km, with a single type of tree modal, imported in V-REP. With this

length of the canal the processor and memory consumption reaches its peak because

of the ray casting process and fewer graphics support.



Figure 3-1: V-REP scene with multiple robots is shown [42].

Figure 3-2: Top view of the V-REP simulated canal complete structure

Figure 3-3: Close view of the V-REP canal structure



Figure 3-4: Tree modal of the V-REP simulated canal

3.2 Unreal Engine

Unreal engine is an open-source gaming engine, developed by Epic Games [11] and

is released in March 2014. It supports Windows, MacOS, and Linux. Because of

its huge community, it has a high availability of free plugin and extensions (e-g,

ROS). It has full access to the C++ source code and can be modified to fit one’s

own specific needs. Having access to the Unreal engine marketplace, it has a huge

variety of available assets where many are free and almost everything can be found

which saves time and money. Assets from most of the modeling software can be

easily imported. It also uses the blueprint system, which is a node-based interface

in which functions and variables can be connected via drag and drop. The blueprint

system allows to create simple or complex behaviors without having to write C++

code, many functions are already implemented. This can speed up implementation

and allows for quickly executed experiments. Unreal engine huge environments can

be created with features such as fog, rain, water, vegetation, etc. while maintaining

good performance the realism of these can be tuned in regards to need, performance,

and available time and budget. Unreal engine is a very complex software, but easy

to get started with and has a huge depth. It also has a sequencer, which allows

creating professional or cinematics photo-real rendering in real-time. However, the

only constraint it offers is a powerful PC to run, especially the graphics card.



3.2.1 Simulation Environment Build in Unreal engine

The total simulation environment built in this thesis consists of a total length of 2, 378

meters that contains eight different types of tree structures, brushes, branches, and

bridges (Fig.3.6−3.9 depicts the same). The 3D canal mesh is shown in Fig.3.5 that

is build in Autodesk [2] and then imported to the Unreal engine. Using the spline

tool in the Unreal engine, the canal mesh is expended to a closed-loop. With its 3.5m

height, 6 to 9m width, and the cemented textures make the 3D canal looks like an

actual canal structure in the simulation environment.

Figure 3-5: Canal 3D mesh, build in Auto Desk and then imported into Unreal engine.

Figure 3-6: Top view of the complete canal in Unreal engine.



Figure 3-7: Close look of the canal in Unreal engine.

Figure 3-8: Close look of the canal bending in Unreal engine.

Figure 3-9: Close look of the bridge over the canal in Unreal engine.



Obstacles in the Simulated Canal environment

Since the objective of the thesis is obstacle avoidance and navigation of an aerial

vehicle in the canal environment. In the canal, obstacles can be brushes, branches,

trunks, and bridges. Hence, for our path-planning problem, we build a bridge and

tilted tree at the same spot (Fig.3.10), so that it can serve as a tough obstacle for

our drone to navigate through.

Figure 3-10: Bridge and tilted tree at the same spot, serves as an hard obstacle.

3.3 Microsoft Airsim Plugin

AirSim [55] is a simulator based on Unreal Engine for aerial vehicles, cars and more.

It is open-source, cross-platform, and supports hardware-in-loop simulations with

famous flight controllers such as PX4. It is built as an unreal plugin that can be

dropped into any unreal environment. Airsim was developed as a platform for AI

research to experiment with autonomous vehicles with deep learning, computer vision,

and improving learning algorithms. For this reason, AirSim also exposes APIs for

independent platform recovery of data and control vehicles.



3.3.1 Airsim Multirotor

Fig.3.11 shows an airsim AR drone modal that is equipped with many common

robotics sensors. The vehicle model includes parameters such as mass, inertia, coef-

ficients for linear and angular drag, coefficients of friction and restitution, which is

used by the physics engine to compute rigid body dynamics and the real world drone

exhibits these parameters. The dimension of the drone is 1x1, that is its length and

width are 1m each. The drone is equipped with several perception sensors, such as

a vertical and a horizontal scanning LiDARs, five cameras that are mounted around

the drone; three at the front, one at back, and one camera at the bottom center.

The drone also has localization sensors such as GPS, IMU, barometer, Gyrometer,

magnetometer, and accelerometer.

Figure 3-11: Airsim multirotor, an AR drone, equipped with sensors.

By adding the following lines in the setting.json file, the vehicle type for the

simulation is automatically set to multirotor.

"SettingsVersion" : 1.2,

“SimMode”: “Multirotor”,



Airsim Multirotor Flight Control

AirSim has an integrated flight controller called simple flight, which is used by default.

To use or customize it, you do not have to do anything. AirSim also supports PX4

for advanced users as another flight controller. The vehicle control through simple

flight controller can be achieved by inputting in the desired velocity, angle, or position

information. One of these modes can be used to define each control axis. Internally

simple flight uses a PID controller cascade to essentially produce actuator signals.

This implies PID location drives the PID velocity, which drives the PID angle level,

which finally drives the PID angle frequency.

Airsim flight control configuration

To use AirSim simple flight, we can define it in settings.json as shown below. This

is by default enabled, so we do not necessarily have to do it.

‘‘Vehicles" : {

“SimpleFlight”: {

“VehicleType”: “SimpleFlight”,

}

}

Airsim Available Sensors for Multirotor

The following sensors are currently supported by AirSim: Camera, IMU, Magnetome-

ter, GPS, Distance, Barometer, and LiDAR.

Configuration of Sensors

The sensors for Airsim multirotor can be enabled by adding the following lines into

the settings.json file

‘‘DefaultSensors" : {

“Barometer”: {

“SensorType”: 1,



“Enabled”: true

},

“Gps′′ : {

“SensorType”: 1,

“Enabled”: true

},

“Lidar1′′ : {

“SensorType”: 6,

“Enabled”: true

“NumberOfChannels”: 16

“PointsPerSecond”: 10000

},

“Lidar2”: {

“SensorType”: 6,

“Enabled”: false

“NumberOfChannels”: 4

“PointsPerSecond”: 10000

},

}

3.4 Comparison between Unreal engine and V-REP

A brief comparison between the two simulation platforms is described in the form of

a table in Table.3.1. Both V-REP & Unreal engine supports sensors such as stereo

camera, LiDAR, GPS, and IMU. V-REP can be used in less computing machine but

Unreal engine requires powerful machine and graphics card to simulate an environ-

ment. V-REP is not meant for a large scale environments while Unreal engine does

supports.



Unreal engine V-REP
Developed by Microsoft Developed by Coppelia Robotics
It has weather effects such as Rain, Wind,
Pollen, Dust, Fog, and temperature

It has only Temperature sensing and fog effects

It has robotics sensors such as LiDAR, IMU,
Barometer, GPS, Magnetometer, and US

Mostly common sensors available

Simulator for drones, cars and more, built on
Unreal Engine

Simulator specifically developed for robotics
applications

open-source, cross-platform, and supports
hardware-in-loop

open-source, cross-platform, and does not sup-
port HIT

Can be integrated with ROS ROS Integration available

Table 3.1: Comparison between Unreal engine and V-REP.





Chapter 4

Methodology

4.1 System Architecture

The overall system architecture is shown in Fig.4.1. The system is divided into three

main blocks; Observation sensors, Mapping, and Decision and Control.

Figure 4-1: Overall system architecture of the obstacle avoidance & mapping system.

1. Observation Sensors : A 2D LiDAR and a stereo camera are used as observation

sensors to percept the actual environment. The raw images and camera information

of both cameras are transported to the second block for further processing.
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2. Mapping : This block of the system provides a three-dimensional environment map.

The images from both the camera sensors are first calibrated and rectified. Next, both

rectified images are processed to construct a disparity image and point cloud data of

the objects in the camera field of view in the world. At this stage, we have data in

the stereo coordinate system, we need to collect the point cloud data and transform

it to a common frame of reference, which in our case is the world coordinate system.

Similarly, the LiDAR scan is collected, converts them into point clouds and then

again transforms it into the same common frame of reference, the world coordinate

system. Both point cloud data at this stage is at the same frame of reference, what we

have to do now is to combine both point clouds, in order to incorporate both sensors

detection, have a robust, and enrich obstacle detection representation. Now our data

is ready to be used for mapping. We used Octomap mapping [61] for 3D mapping of

the canal environment.

3. Path planning & control : The third block of the system is primarily responsible

for path planning and low-level control after the map is being generated.

We will explain each of them one by one in detail in the succeeding sections.

4.1.1 Getting Left and Right Image from Stereo camera

Like human binocular vision, the stereo camera has two cameras with two lenses that

can capture images simultaneously. In the same way, we use the front left and front

right cameras of the Airsim multirotor as a stereo camera and the baseline between

them is kept 20mm as shown in Fig. 4.2.

Getting images from airsim camera sensor to ROS includes two types of configu-

rations:

The first step to getting an image from the airsim camera to the Unreal engine

is done by enabling camera sensors, defining the type of image the camera has to

generate, and setting their properties in settings.json file. This is done by simply

adding the following lines in the settings.json file:

‘‘Cameras’’ :



Figure 4-2: Stereo camera on the Airsim multirotor. Both cameras have same pose
and focal length.

‘‘CameraName’’ : “1′′, “ImageType′′ : “0′′, “PixelAsFloat′′ : “true′′, “Compress′′ : “true′′}

“CameraName′′ : “2′′, “ImageType′′ : “0′′, “PixelAsFloat′′ : “true′′, “Compress′′ : “true′′}

This will enable camera sensors and set the type of image the camera has to cap-

ture. For image properties, we have to add the following lines

‘‘CameraDefaults’’ : {

‘‘CaptureSettings’’ : “1′′

{

“ImageType′′ : “0′′

“Width′′ : “640′′

“Height′′ : “480′′

“FOVDegrees′′ : “120′′

“AutoExposureSpeed′′ : “100′′

“AutoExposureBias′′ : “0′′

“AutoExposureMaxBrightness′′ : “0.64′′

“AutoExposureMinBrightness′′ : “0.03′′

“MotionBlurAmount′′ : “0′′

“TargetGAmma′′ : “1.0′′

“ProjectionMode′′ : “′′



“OrthoWidth′′ : “5.12′′

}

After setting these configurations, we are able to receive left and right rectified

images in the Unreal engine.

The next step is to publish the images to ROS using airsim APIs.

responses = client.simGetImages([airsim.ImageRequest(0, airsim.ImageType.Scene)])

Where the first argument “0” represents the png format of the image.

4.1.2 Airsim LiDAR data to ROS

Airsim multirotor has two built-in LiDARs. Like in the case of a stereo camera, to

get LiDAR scans we have to set settings.json file and add the following lines.

‘‘frontLidarSensor’’ : {

‘‘SensorType’’ : 6,

‘‘Enabled’’ : false,

“NumberOfchannels′′ : 1,

“RotationsPerSecond′′ : 25,

“Range′′ : 30,

“X′′ : 0, “Y′′ : 1, “Z′′ : − 1,

“Roll′′ : 0, “Pitch′′ : 0,

“VerticalFOVUpper′′ : − 1,

“VerticalFOVLower′′ : 1,

“HorizontalFOVStart′′ : − 90,

“HorizontalFOVEnd′′ : 90,

“DrawDebugPoints′′ : false,

“DataFrame′′ :



The data from the Unreal engine is published on a ROS topic using standard ROS

publisher method.

4.1.3 Stereo Disparity and Point Cloud construction

For disparity image computation and point cloud generation, we use Stereo Image Proc

[9], the node that creates a stereo image pipeline. Stereo Image Proc rectifies raw

image pairs of the stereo camera. It may also conduct stereo processing to produce

disparity images and point clouds. We need in the .launch file , remapping of the

following topic names:

<launch>

<node pkg=‘‘stereo image proc’’ type=‘‘stereo image proc’’ name=‘‘’’

respawn=‘‘true’’>

<remap from=‘‘left/image raw’’ to=‘‘/raw stereo/left/image raw’’ />

<remap from=‘‘left/camera info’’ to=‘‘/raw stereo/left/camera info’’ />

<remap from=‘‘right/image raw’’ to=‘‘/raw stereo/right/image raw’’ />

<remap from=‘‘right/camera info’’ to=‘‘/raw stereo/right/camera info’’ />

</node>

</launch>

Figure 4-3: Basic block diagram that shows the working of Stereo Image Proc

node[9].

For this setup, a simple basic block diagram is given in Fig. 4.3. It subscribes

to left, right images of the stereo pair and left, right camera information topics.



After processing, the node publishes left, right rectified images, mono color images,

disparity image, and point cloud as output, as can be seen from Fig. 4.3. Fig. 4.4

shows a complete rqt graph showing the full flow of the Stereo Image Proc setup

in the ROS system.

Figure 4-4: rqt graph showing the flow of topics through Stereo Image Proc node.

The left imager optical frame (X Up, Y Down, Z out) produces point clouds.

Figure 4-5: Point cloud construction through stereo camera [9].



Disparity Image Output Using V-REP Simulation

The disparity image output using V-REP physics engine is shown in Fig. 4.6.

(a) Ground Truth (b) Disparity Image

(c) Left Image (d) Right Image

Figure 4-6: Disparity Image output using V-REP simulation engine.

Disparity Image Output Using Unreal Engine

The disparity image output using Unreal engine is shown in Fig. 4.7.

(a) Ground Truth (b) Disparity Image

(c) Left Image (d) Right Image

Figure 4-7: Disparity Image output using Unreal engine.



Point Cloud Output Using V-REP Simulation

Stereo point clouds with different representations along with actual ground truth are

shown in Fig. 4.8. The Stereo Image Proc provides stereo point clouds computed

from disparity images.

(a) Ground Truth (b) PCL RGB Color Representation

(c) PCL Mono Color Representation (d) PCL Intensity Representation

Figure 4-8: Point Clouds output using V-REP simulation engine.

Point Clouds Output Using Unreal Engine

The point clouds output using Unreal engine is shown in Fig. 4.9 & 4.10.

(a) Ground Truth (b) PCL RGB Color Representation

Figure 4-9: Point Clouds output using Unreal engine



(a) PCL Mono Color Representation (b) PCL Intensity Representation

Figure 4-10: Point Clouds output using Unreal engine.

Stereo Camera point cloud Transformation

The point cloud collected from the stereo camera after computing disparity image is

in the stereo frame of reference. However, between our stereo camera and the vehicle

or its base frame, we need to publish the frame transformation. Point cloud from left

and right camera frame is transformed to the stereo frame which is the center of both

the cameras. The stereo frame is then transformed into the multirotor frame which

in our case is base frame, and it is the center of the multirotor as can be seen from

Fig.4.11 & Fig.4.12. The best way to achieve this transformation is by using the ROS

tf package .

Figure 4-11: Stereo camera transformation w.r.t drone base.



Figure 4-12: tf tree transformation between Stereo camera & LiDAR to drone base
frame

LiDAR Point cloud Transformation

Since LiDAR is mounted on the top of the multirotor, the point cloud generated by

LiDAR also needs to be transformed to the base frame. LiDAR in Airsim multirotor

is mounted at the center of the vehicle with a shift along the z-axis. Again, using the

same ROS tf package , we transformed data from LiDAR frame to base frame.

4.2 Sensor data fusion via Concatenation

Uptill now, we have data from both the sensors in the same frame of reference. Now

we need to combine them to have a reliable collision detection system to incorporate

both sensors detection. We concatenate the data by implementing the below method.

The ground truth and its result are shown in Fig. 4.13 & 4.14

concatPcl=stereoPcl;

concatPcl+=LidarPcl;



Figure 4-13: Actual Ground Truth.

Figure 4-14: Visualization of the concatenated sensor data.

4.3 OctoMap mapping framework

Octomap mapping uses a tree-based representation to provide maximum flexibility in

the mapped region and resolution. To ensure updatability and cope with sensor noise,

it conducts a probabilistic occupancy calculation. In addition, compression methods

ensure the compactness of the resulting models.

Octree

An octree is a hierarchical 3D spatial classification data structure. The space found

in a cubic volume, usually called a voxel, is defined by each node in an octree. This

volume is subdivided recursively into eight sub-volumes until, as shown in Fig.4.15,

a given minimum voxel size is achieved. The minimum size of the voxel determines

the octree’s resolution. Since an octree is a hierarchical data structure, if the inner

nodes are preserved correctly, the tree can be split at any point to obtain a coarser



subdivision.

Octrees can be used in its most basic form to model a Boolean property. This is

Figure 4-15: Description of a free (shaded white) and occupied (black) cell stored in
an octree (a), the corresponding representation of the tree (b), and the corresponding
compact bitstream in a directory (c) [61].

generally a volume occupancy in the sense of robotic mapping. The corresponding

node in the octree is initialized if a certain volume is counted as occupied. Any

uninitialized node in this Boolean setting may be free or unknown. The developers[61]

of the Octomap has specifically represented free volumes in the tree in order to resolve

this confusion. These are created along a ray determined with raycasting in the

area between the sensor and the measured endpoint. Implicitly modeling regions of

undefined space is not initialized. An octree example of free and occupied nodes from

stereo camera data can be seen in Fig.4.16. Having Boolean occupancy states or

discrete labels allows the octree to be compactly represented: if all children of a node

have the same state (occupied or free) they can be pruned. This results in a major

reduction in the number of nodes to be held in the list.

Octomap mapping provides ways to combine the compactness of octrees using

discrete labels with probabilistic modeling updates and versatility.



Figure 4-16: An octree example of free and occupied nodes from stereo camera data,
in a canal like environment.

Because of the tree structure, octrees require overhead in terms of data access

complexity relative to a fixed-size 3D grid. The complexity of O(d) = O(logn) can be

performed with a single random query on a tree data structure containing n nodes

with a tree depth of d. Traversing the entire tree in a depth-first way requires O(n)

complexity. An octree is limited to a defined total dmax depth in practice. This

results in O(dmax) complexity of a random node search with dmax constant. Thus,

the overhead relative to a similar 3D grid is constant for a fixed depth dmax

4.3.1 Probabilistic sensor fusion

Sensor readings are combined with occupancy grid mapping in Octomap mapping.

The probability of occupying the P (n) of a leaf node n provided the measurements

of the sensor z1:t is calculated by

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)

1− P (n)

]−1
. (4.1)



This update equation depends on zt which is the current measurement, P (n) which

is a prior probability, and P (n|z1:t−1) which is the previous estimate of a node leaf

n. P (n) is the term that refers to the likelihood of occupying voxel n given the zt

measurement. This value is unique to the sensor that has provided zt.

L (n|z1:t) = L(n|z1:t−1) + L(n|zt), (4.2)

where,

L (n) = log

[
P (n)

1− P (n)

]
. (4.3)

This update rule formulation allows quicker updates as multiplications are re-

placed by additions. This update rule formulation allows quicker updates as multi-

plications are replaced by additions. The logarithms do not need to be determined

during the update process in the case of pre-computed sensor models. Remember

that log-odds values can be translated to probabilities and therefore store this value

for each voxel instead of the likelihood of occupancy vice versa and Octomap. It is

worth noting that this probability change has the same impact as counting hits and

misses for certain sensor template configurations that are symmetrical, i.e. nodes

being updated as hits have the same weight as those updated as misses.

A limit on the occupancy probability P (n|z1:t−1) is often applied when a 3D map

is used for navigation. When the threshold is reached, a voxel is considered to be

occupied and is otherwise presumed to be free, thus creating two discrete states. From

eq. (4.4) It is clear that, in order to change the voxel state, we need to incorporate as

many observations as have been incorporated in order to define its currency. In other

words, if a voxel has been observed free for k times, it should be observed occupied

at least k times before it is considered to be occupied by the threshold (assuming free

and occupied measurements are equally likely in the sensor model).



4.4 Octomap Robot Operating System (ROS) Im-

plementation

The Octomap server [61] ROS package is used in this work, which calculates and

publishes OctoMaps as ROS messages octomap msgs/Octomap .

Octomap is incorporated into ROS so that in a ROS environment, 3D octree oc-

cupancy grid maps can be created from 3D point cloud data. Octomap developers

provide a map server for the ROS system which subscribes to point cloud published

on ROS and creates a map using the tf library localization. The rqt graph of Oc-

tomap mapping is shown in the Fig.4.17. A stereo camera is used to publish the

3D point cloud data to the Octomap ROS node in the /stereo/points topic. On

/tf topic, the transformations between sensor and map frames are published that

actually represent the relative transformation between stereo and map frame. The

node also provides services for visualizing and saving the map to disk. Flow chart of

the ROS Octomap package, Octomap server is shown in Fig.4.18.

Figure 4-17: Topics connection between nodes of our canal system using Octomap.

The following topics are being published by octomap server:

octomap binary : A compact binary version of the OctoMap that has octomap msgs/Octomap

message type and stores only Free and occupied voxel states.

octomap full : Octomap full is octomap msgs/Octomap type of topic that publishes

the full state of the OctoMap.

occupied cells vis array : Occupied cells vis array is a visualization msgs/

MarkerArray type of topic that is used to visualize occupied voxels in RVIZ.

free cells vis array : free cells vis array is a visualization msgs/MarkerArray

type of topic that is not published but can be enabled with the publish free space



Figure 4-18: Flow chart of Octomap Server Package

parameter.

octomap point cloud centers : The middle points as a point cloud of all the filled

voxels. Since there is no volume in a point cloud (as opposed to the box markers used

in occupied cells vis array), there will be differences between voxel center points in

the visualization. With the different voxel size resolutions, the gaps vary in size.

projected map : A type of nav msgs/OccupancyGrid that generates a 2D down

projected occupancy map of the 3D OctoMap.

4.4.1 Octomap Outputs Using V-REP Physics engine

Local and global map of the canal environment using V-REP is shown in Fig.4.19.



(a) Ground Truth (b) Local Octomap of the canal

(c) Global Octomap(Side view) (d) Global Octomap(Top view)

Figure 4-19: Octomap mapping Results using V-REP.

4.4.2 Octomap Outputs Using Unreal engine

Local Map

During the experiment an environment scene that contains a bridge and a fallen

tree at the same location to analyze the 3D local map of both hard obstacles such as

bridge and cluttered obstacles like trees. Both types of objects are fully and efficiently

mapped, which can be seen from Fig.4.20(a)(b).

(a) Local Ground Truth (b) Local Octomap of the canal

Figure 4-20: Local Octomap Results using Unreal engine.



Global Map

Fig.4.21(a) & (b) shows the actual ground truth and the global map of the simulation

environment. While mapping, the velocity of the drone was 3.6km/h, it took 39.63

minutes to complete the canal mapping and consumed 184.9MB of memory.

(a) Actual complete canal environment (b) Global map of canal environment

Figure 4-21: Global Octomap Results using Unreal engine.

4.5 Path Planning

The problem of motion-planning is often overcome either by first discretizing the

continuous state space with a graph-based search grid or by sampling stochastic

incremental searches. Graph-based searches, such as A* [36], are usually optimal

resolution and full resolution. They are guaranteed to find the optimum solution, if

a solution exists, and otherwise return failure (up to the discretization resolution).

Such graph-based algorithms do not scale well with problem size (e.g., problem scope

state dimension).

Stochastic searches, such as Rapidly Exploring Random Trees RRTs [43], Prob-

abilistic Roadmap PRMs [41], and Expansive-Spaces Tree ESTs [39], use sampling-

based approaches to ignore the need for state-space flexibility. It helps them to easily

scale with the size of the problem and to consider kinodynamic constraints explicitly,

but the result is a less rigorous guarantee of completeness. Probabilistically RRT’s are

complete, offering the likelihood of finding an effective solution if one is in existence,

as iterations reach infinity, approach unity [31].



(a) RRT∗ (b) Informed RRT∗

Figure 4-22: RRT ∗ and InformedRRT ∗ solutions, same cost, and on a random world. Once an
initial solution has been found, InformedRRT ∗ focuses the search to optimize the solution in the
ellipsoidal subset. That’s why InformedRRT ∗ is finding a better solution than RRT ∗ [31].

To date, these sampling-based algorithms have not made any predictions about

the solution’s optimality. Urmson and Simmons [58] found that using a heuristic

sampling to bias improved RRT solutions, but did not measure the results formally.

Ferguson and Stentz [29] understood that the length of a solution limits potential

improvements from above and showed an iterative anytime RRT approach to solve a

variety of progressively smaller planning problems. Karaman and Frazzoli [40] later

showed that RRTs return to a suboptimal path with a single possibility showing that

any RRT-based path can almost definitely be suboptimal and present a new class of

optimal planners. Both optimal forms have been identified separately from RRTs and

PRMs, RRT ∗ and PRM∗. Such algorithms are shown to be asymptotically optimal,

with the chance to find the optimum resolution reaching unity as infinity approaches

the variety of iterations.

RRTs are not asymptotically optimal because future expansion is biased by the

existing state graph. By introducing incremental rewiring of the graph, RRT ∗ over-

comes this [31]. Not only are new states added to a tree, but they are also considered

to substitute parents for existing nearby tree states. This results in an algorithm

with uniform global sampling that finds the optimal solution to the planning problem



asymptotically by finding the optimal paths from the initial state to each state in the

problem domain asymptotically. This becomes costly in high dimensions and is also

inconsistent with their single-query nature.

In this thesis, we concentrated on the issue of optimal route planning as it concerns

reducing the length of the path in Rn. For such problems, the inclusion of states from

an ellipsoidal subset of the planning domain is a necessary condition of improving

the solution at any iteration. The probability of introducing these states by uniform

sampling is indefinitely limited as the size of the planning problem decreases or the

solution exceeds the hypothetical limit and provides an exact method for specifically

sampling of the ellipsoidal subset. It is also shown that this direct sampling results in

linear convergence to the optimal solution with strict assumptions (i.e., no obstacles).

Figure 4-23: In a random world problem, the solution costs for RRT ∗ and
InformedRRT ∗ versus computational time [31].

This method of direct sampling enables informed-sampling planners to be devel-

oped. Such a planner, Informed RRT ∗, is basically introduced to show the benefits of

informed incremental search (Fig.4.22). InformedRRT ∗ functions as RRT ∗ until a

first solution is found, after which it can only test from the sub-state set specified by

an admissible heuristic to boost the solution. This set implicitly balances exploita-

tion versus exploration and does not require additional standardization (i.e. there

are no additional parameters) or assumptions (i.e. all relevant homotopic categories

are searched). Although heuristics may not always boost the search its importance

in real-world planning shows its practicality. In situations where no additional in-



formation is provided (e.g. where the informed subset includes the entire planning

problem), Informed RRT ∗ is RRT ∗ equivalent. InformedRRT ∗ is an improved ver-

sion of RRT ∗ that shows a clear improvement. When the configuration becomes more

complex, it demonstrates huge improvements in order as shown in Fig.4.23. The al-

gorithm is less reliant on the dimension and domain of the planning problem as well

as the ability to find improved topologically distinct paths faster as a result of its

focused search. It is also able to find solutions with comparable computation within

tighter tolerances of the optimum than RRT ∗, and in the absence of obstacles the

optimum solution can be found within system zero in the end time (Fig.4.24).

Figure 4-24: In the absence of obstacles, the path planned by InformedRRT ∗ from
start state to goal state is a straight line [31].

4.5.1 Informed RRT*

A pseudo algorithm of the informed RRT* is shown in Algs.1 and 2. It is the same

as RRT* with the addition of lines 3, 6, 7, 30, and 31. Informed RRT*, like RRT*,

searches for optimum path in a planning problem, by incrementally expanding a tree

in state space, T = (V,E), which consists of a set of vertices, and edges, towards

randomly selected states, new vertices are being added by growing the graph in the

free space. The graph is reconnected with each other such that the cost of the

neighboring vertices is minimized. Informed RRT* differs from RRT* in a way that,

when the solution is found, it focuses the search on the part that can minimize and

improve the solution. It does it by directly sampling the ellipsoidal heuristic. As can



be seen from line 30, once a solution is found, informed RRT* adds it to the list of

the possible solutions. The algorithm uses, the minimum of this list (line 6 describes

this) to directly sample and estimate Xf .

It is convenient to describe the subfunctions introduced in the algorithms.

Sample: Given two states, xstart, xgoal ∈xfree and a maximum heuristic value, Cmax ∈

R, the independent and identically distributed (i.i.d) from the state space, xnew ∈ X,

is being returned from the function Sample(xstart, xgoal, Cmax), such that the path

between xstart and xgoal that has to go through xnew is less than Cmax as described

in Alg.2. In most planning problems this is computed only once at the start of the

problem.

InGoalRegion: Given a state, x ∈ Xfree, the inGoalRegion function returns True

or False if the state is in the goal region or not, respectively. Normally, a ball

of radius rgoal is defined around rgoal, hence if the state is in the ball the function

InGoalRegion() returns True otherwise False.

RotationToWorldFrame: Given two states, the focal points of hyperellipsoid, xstart, xgoal ∈

X, the rotation matrix C ∈ SO(n) is returned by RotationToWorldFrame() func-

tion, from the hyperellipsoid to the world frame as per line 6. This rotation is also

calculated once at the start of the problem.

Nearest Neighbor: Given a graph tree T = (V,E), a point x ∈ X, the function

Nearest : (T, x)← v ∈ V which is closest to x in terms of distance, that is

Nearest(T = (V,E), x) := argminv ∈ V ‖x–v‖

Near Vertices: Given a tree T = (V,E), a point p ∈ X, and a number q such that

q ∈ R > 0, the function Near : (T, p, q) returns a vertex in V that lies inside a ball

with radius q centered at p, i-e., Near(T, p, q) := {v ∈ V, v ∈ p, q}

Steering: The function Steer(x, y) returns a point z in such a way so that the dis-

tance between y and z is closer than the distance between x and z.

Collision Test: CollisionFree() is a Boolean function that returns True if the

state or the line between [p, q] ∈ Xfree is free and False otherwise.



Algorithm 1 Informed RRT∗(Xstart, Xgoal)

Input:
Output:

1: V ← xstart
2: E ← φ;
3: Xsoln ← φ;
4: T = (V,E);
5: for iteration = 1...N do
6: cbest ← minxsoln ∈ Xsoln{Cost(xsoln)};
7: xrand ← Sample(xstart, xgoal, cbest);
8: xnearest ← Nearest(T, xrand);
9: xnew ← Steer(xnearest, xrand);

10: if CollisionFree(xnearest, xnew) then
11: V ← xnew;
12: Xnear ← Near(T, xnew, rRRT ∗);
13: xmin ← xnearest;
14: cmin ← Cost(xmin) + c.Line(xnearest, xnew);
15: for ∀xnear ∈ Xnear do
16: cnew ← Cost(xnear) + c.Line(xnear, xnew);
17: if cnew < cmin then
18: if CollisionFree(xnear, xnew) then
19: Xmin ← Xnear

20: cmin ← cnew
21: end if
22: end if
23: end for
24: E ← E ∪ {(Xmin, Xnew)}
25: for ∀xnear ∈ Xnear do
26: cnear < Cost(xnear)
27: cnew ← Cost(xnew) + c.Line(xnear, xnew);
28: if cnew < cnear then
29: if CollisionFree(xnear, xnew) then
30: xparent < Parent(xnear)
31: E ← E \ {(xparent, xnear)}
32: E ← E ∪ {(xnew, xnear)};
33: end if
34: end if
35: end for
36: if InGoalRegion(xnew) then
37: Xsoln ← Xsoln ∪ xnew;
38: end if
39: end if
40: end for
41: return T ;



Algorithm 2 Sample (Xstart, Xgoal)

Input:
Output:

1: if cmax <∞ then
2: cmin ← ‖xgoal − xstart‖2;
3: xcenter ← (xstart + xgoal)/2;
4: C ← RotationToWorldFrame(xstart + xgoal);
5: r1 ← cmax/2;
6: {ri}i=2,....,n ← (

√
cmax

2 − cmin
2)/2;

7: L← diag{r1, r2, ....., rn};
8: xball ← SampleUnitBall;
9: xrand ← (CLxball + xcenter) ∩X;

10:

11: else
12: xrand ∼ U(X);
13: return xrand;

4.6 Informed RRT* Robot Operating System (ROS)

Implementation

For a long time, autonomous waypoint navigation was an integral part of drone

applications. This approach works well when the drone flies at high altitudes without

obstructions. However, in the case of low altitude flights, it becomes difficult for

drones to navigate independently and require sensors to prevent them from colliding

with the obstacles around them. Situations such as these could be avoided if a

planning algorithm would take advantage of previous observations in the form of a

3D map and use it to guide the Micro-aerial vehicle (MAV) in the collision-free path

to preserve the global navigation waypoint plan. This can be done by creating a

mapping system that would use depth information from stereo cameras or lidars to

create a map of occupancy. In order to navigate autonomously, the planner would

use this map and global plan as input and build control commands for the MAV.

The idea is to continue to generate the environment’s 3D map on the fly and

attempt to reach the goal point by reactively calculating intermediate waypoints to

the final goal, avoiding the obstacles on the map.

The 3D mapping of the environment is explained in the Octomap section of this



Figure 4-25: Flow chart of the InformedRRT ∗ and ROS implementation.

chapter, where Octomap, an octree based data structure was implied. An Octree

encodes the data on the 3D grid in the memory efficiently and allows operations such

as traversing very fast. So the input to this tree is a point cloud and we get a binary

occupancy map representation consisting of information about all the occupied and

unoccupied cells after thresholding the probabilities.

In terms of path planning, we actually take advantage of the Flexible Collision

Check (FCL) [4] and Open Motion Planning Library (OMPL) [7] libraries in im-

plementing InformedRRT ∗. Initially, Octomap binary, odometry, & goal point

topics are subscribed by the planner, searches for a path from start to goal us-

ing OMPL. Meanwhile checks if each node is collision-free through free collision li-

brary (FCL). The optimal path returned by the planner is published on another ROS



topic of trajectory msgs::MultiDOFJointTrajectory type, which in our case is

waypoints . Fig. 4.25 shows the flow chart for the implementation of InformedRRT ∗.

4.7 Autonomous canal exploration

The ultimate objective of this thesis is to autonomously navigate the drone over the

canal while knowing the predefined GPS points at 25 meters apart from each other.

Since our observation sensor can percept the environment for 25 meters so we have

set this range as a local goal. Fig.4.26, shows the flow chart to autonomously explore

the canal, assuming we have fixed GPS points at certain known locations.

Figure 4-26: Flow chart of the autonomous canal exploration implementation.



LocalGoals : A 3 x n− dimensional array, that contains the location of fixed

points, 25 meters apart from each other, is supplied to the goal stack. This stack

provides each goal iteratively when the drone reaches a circle centered at the

previous goal with a certain radius rgoal .

PathPlanning : when the current position of the drone from odometry and local is

supplied to the path planning part, it plans a path between the current position of

the drone and the goal point.

ExecuteTrajectory : The planned path is then provided to the drone controller as

a waypoint. The drone has to follow the path until reaches to the goal point.

IsDroneReachedGoal : After planning a path, the function IsDroneReachedGoal

returns True, if the drone has reached the circle centered at last point of the

waypoint with a radius rgoal otherwise it returns False.

IsDroneReachedFinalDestination: The function

IsDroneReachedF inalDestination returns True if the drone traverses all the goals

in the goal stack, and False if still, goals are to be traversed.

NextGoal : The function NextGoal increment the pointer in the goal stack to be

traversed. If all the goal points are traversed by drone, this function simply returns

None.

TakeOff : The function TakeOff sets the drone altitude to 4 meters and stay

hovering until an obstacle-free path is planned to follow.

SafeLanding : If the drone traverses all the goal points and has reached the final

destination point, the function SafeLanding enables him to land safely.





Chapter 5

Experimental Results

5.1 Path planning evaluation

To assess the proposed method, we have evaluated the system in certain situations

where it can either succeed or fail. Here, we introduce the word situations, where the

environment, the starting position, and the target are given, the platform should be

able to find a path and allow the drone to travel to the goal position without colliding

with any obstacle.

5.1.1 Situation 1: No obstacles

There are no obstacles to this situation. Going in any direction is not going to lead

to a collision. The purpose of this situation is to see if the path-planning algorithm is

planning a straight path to the goal position. During the experiment, the start and

goal position of the drone was (0, 1, 6) and (23, 1, 6), as Fig.5.1 clearly infers that

the drone follows the straight path as there were no obstacles in the heading of the

drone.

5.1.2 Situation 2: Hanging branches of the Tree

In this situation, the drone has to avoid tree branches hanging in the heading of the

drone. In this case, the drone has two options, to fly over the top of the tree or
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Figure 5-1: Situation 1, where there is no obstacle In the drone path, and the path-
planning algorithm has to plan a straight path which is the shortest path.

make an attempt finding an obstacle-free window through the branches if any. In this

experiment, a safe window for the drone exists where the drone can safely navigate

through the window and reach the goal position as shown in the Figures.(5.2), (5.3)

& (5.4).

Figure 5-2: Ground truth of situation 2, when there is hanging tree branches.



Figure 5-3: Planned path (front view).

Figure 5-4: Planned path (side view).

Another similar experiment, where the canal is more denser with tree branches.

The vehicle follows a similar trajectory as in the case of the above one. Fig.5.5 & 5.6

shows the planned path and actual ground truth.



Figure 5-5: Ground truth of situation 2, when there is a more cluttered tree branches
in the path of the drone.

Figure 5-6: Drone path of situation 2.

5.1.3 Situation 3: Bridge Avoidance

In the canal like environment, one among the possible obstacles could be bridges over

the canal. In this situation, an attempt was made to check the behavior of the vehicle

while avoiding collision with a bridge that comes in its heading over the canal. Here,

the vehicle has two possibilities, to cross over the bridge or cross under the bridge.



While experimenting, the algorithm shows both types of behaviors and crosses the

bridge from either of the aspects. Fig.5.7 shows the ground truth and Fig.(5.8) &

(5.9) shows the planned path for this situation.

(a) Bridge (Front view). (b) Bridge (Top view)

Figure 5-7: Ground truth of Situation 3.

Figure 5-8: Drones trajectory, passing over the bridge (front view).

5.1.4 Situation 4: Avoidance of a tree trunk that is right

above the canal

Another possible obstacle in a canal-like environment could be a tree trunk that is

tilted towards the canal, as shown in Fig.5.10. The result of our method in this



Figure 5-9: Drones trajectory, passing over the bridge (side view).

situation is amazing and the vehicle avoided it as can be seen from Fig.(5.11) &

(2.12). These are probably not as much a hard obstacle for the drone as in the case

of situation 2.

Figure 5-10: Ground truth of situation 4, where the drone has to avoid tree trunk
that comes in the path of the drone.



Figure 5-11: Drone trajectory for situation 4 (Front view).

Figure 5-12: Drone trajectory for situation 4 (side view).

5.1.5 Situation 5: Canal completely stuck with obstacles

Unlike situation 1, here the path-planning algorithm has no choice to plan a path for

the drone as the path ahead is completely blocked, however, since we have a complete

map of the past, the drone can navigate back to any position if required.





Chapter 6

Conclusions & Future Work

The main objective of this thesis was to develop a collision-avoidance system for a

Micro-aerial vehicle capable of operating autonomously in a canal-like environment

in simulation. The vehicle is equipped with a stereo camera and a 2D LiDAR for

sensing the environment in front of the vehicle in their respective ranges.

We used the Octomap method [61] to map the 3D canal structure. From the

sensors data, Octomap makes a probabilistic map of the canal environment which

has the ability to deal with sensor noise and a dynamic environment. The drawback

with the use of OctoMap is that, in order to avoid obstacles, only obstacles within

a limited range could be considered as looping through the entire map created is

not computationally feasible. Also, during the execution, Octomap was observed

to consume more processing and memory for long-run drone canal mapping. This

problem can be resolved if voxel downsampling, resolution reduction, and reduction

of the range of the sensor are incorporated.

The obstacle avoidance system is currently unable to detect small objects such as

wires, leaves and thin branches of the tree. In order to overcome these deficiencies, the

disparity image and Octomap could be further improved through suitable parameter

selection.

Informed RRT* [31] shows promising results in almost every test scenario if a

path exists. The algorithm is tested in five different test scenarios, and the planner

effectively provided an optimum path to avoid all obstacles, keeping drones safety
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distance from obstacles. After having the results of Informed RRT*, we felt that it is

indeed the best planning algorithm for canal mapping application through an aerial

vehicle, it will consume less power and time to complete a mission.

We used the airsim [55] plugin in the Unreal engine [11] to simulate the canal

environment. One can build a near-real simulation environment in the Unreal engine.

In our simulation environment, we include almost every possible obstacle that can

happen in a real-world canal system, and an effort is being made to make it as much

real as it could. To the best of our knowledge, this is the first attempt, a canal

environment is simulated in a realistic way in the Unreal engine.

In this thesis, the localization was assumed to be perfect and we use the ground

truth provided by the simulation engine. To have somehow realistic localization, noise

could be added to the ground truth, and then apply state estimation.

We are finally able, to deliver a Micro-aerial vehicle, that has the capabilities of

mapping the 3D structure of the canal-like environment, avoiding all obstacles, and

planning an obstacle-free path from start to goal position of the canal. We tested our

vehicle for a 2,378m length of canal mapping, as can be seen in the Octomap result

part of this thesis.
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Appendix A

Airsim Codes

A.1 Acquiring Left, Right images and Vehicle Pose

from Unreal-Airsim to ROS

1 #!/usr/bin/env python

2

3 import setup path

4 import airsim

5 import numpy as np

6 import rospy

7 from sensor msgs.msg import Image,CameraInfo

8 from tf2 msgs.msg import TFMessage

9 from geometry msgs.msg import TransformStamped

10 from geometry msgs.msg import PoseStamped

11 from math import pi

12 from cv bridge import CvBridge

13 import cv2

14

15 CAMERA FX = 224.066931372

16 CAMERA FY = 224.066931372

17 CAMERA CX = 320

18 CAMERA CY = 240
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19

20 Tx = −0.50 * CAMERA FX

21

22 CAMERA K1 = −0.000591

23 CAMERA K2 = 0.000519

24 CAMERA P1 = 0.000001

25 CAMERA P2 = −0.000030

26 CAMERA P3 = 0.0

27

28 IMAGE WIDTH = 640 # resolution should match values in settings.json

29 IMAGE HEIGHT = 480

30

31 class stereoPublisher:

32 def init (self):

33 self.bridge rgb = CvBridge()

34 self.msg rgb right = Image()

35 self.msg rgb left = Image()

36 self.msg info right = CameraInfo()

37 self.msg info left = CameraInfo()

38 self.msg tf = TFMessage()

39 self.sim pose msg = PoseStamped()

40 self.odom msg = Odometry()

41

42 def getRGBImageRight(self,response rgb):

43 img1d = np.fromstring(response rgb.image data uint8, ...

dtype=np.uint8)

44 img rgb right = img1d.reshape(response rgb.height, ...

response rgb.width, 3)

45 img rgb right = img rgb right[..., :3][..., ::−1]

46 return img rgb right

47

48 def getRGBImageLeft(self,response rgb):

49 img2d = np.fromstring(response rgb.image data uint8, ...

dtype=np.uint8)

50 img rgb left = img2d.reshape(response rgb.height, ...

response rgb.width, 3)



51 img rgb left = img rgb left[..., :3][..., ::−1]

52 return img rgb left

53

54 def GetCurrentTime(self):

55 self.ros time = rospy.Time.now()

56

57 def CreateRGBMessageRight(self,img rgb right):

58 self.msg rgb right.header.stamp = self.ros time

59 self.msg rgb right.header.frame id = "/rightCam link"

60 self.msg rgb right.encoding = "bgr8"

61 self.msg rgb right.height = IMAGE HEIGHT

62 self.msg rgb right.width = IMAGE WIDTH

63 self.msg rgb right.data = ...

self.bridge rgb.cv2 to imgmsg(img rgb right, "bgr8").data

64 self.msg rgb right.is bigendian = 0

65 self.msg rgb right.step = self.msg rgb right.width * 3

66 return self.msg rgb right

67

68 def CreateRGBMessageLeft(self,img rgb left):

69 self.msg rgb left.header.stamp = self.ros time

70 self.msg rgb left.header.frame id = "/leftCam link"

71 self.msg rgb left.encoding = "bgr8"

72 self.msg rgb left.height = IMAGE HEIGHT

73 self.msg rgb left.width = IMAGE WIDTH

74 self.msg rgb left.data = ...

self.bridge rgb.cv2 to imgmsg(img rgb left, "bgr8").data

75 self.msg rgb left.is bigendian = 0

76 self.msg rgb left.step = self.msg rgb left.width * 3

77 return self.msg rgb left

78

79 def CreateInfoMessageRight(self): #Right camera camera info

80 self.msg info right.header.frame id = "/rightCam link"

81 self.msg info right.height = self.msg rgb right.height

82 self.msg info right.width = self.msg rgb right.width

83 self.msg info right.distortion model = "plumb bob"

84



85 self.msg info right.D.append(CAMERA K1)

86 self.msg info right.D.append(CAMERA K2)

87 self.msg info right.D.append(CAMERA P1)

88 self.msg info right.D.append(CAMERA P2)

89 self.msg info right.D.append(CAMERA P3)

90

91 self.msg info right.K[0] = CAMERA FX

92 self.msg info right.K[1] = 0

93 self.msg info right.K[2] = CAMERA CX

94 self.msg info right.K[3] = 0

95 self.msg info right.K[4] = CAMERA FY

96 self.msg info right.K[5] = CAMERA CY

97 self.msg info right.K[6] = 0

98 self.msg info right.K[7] = 0

99 self.msg info right.K[8] = 1

100

101 self.msg info right.R[0] = −1

102 self.msg info right.R[1] = 0

103 self.msg info right.R[2] = 0

104 self.msg info right.R[3] = 0

105 self.msg info right.R[4] = −1

106 self.msg info right.R[5] = 0

107 self.msg info right.R[6] = 0

108 self.msg info right.R[7] = 0

109 self.msg info right.R[8] = −1

110

111 self.msg info right.P[0] = CAMERA FX

112 self.msg info right.P[1] = 0

113 self.msg info right.P[2] = CAMERA CX

114 self.msg info right.P[3] = Tx

115 self.msg info right.P[4] = 0

116 self.msg info right.P[5] = CAMERA FY

117 self.msg info right.P[6] = CAMERA CY

118 self.msg info right.P[7] = 0

119 self.msg info right.P[8] = 0

120 self.msg info right.P[9] = 0



121 self.msg info right.P[10] = 1

122 self.msg info right.P[11] = 0

123

124 self.msg info right.binning x = ...

self.msg info right.binning y = 0

125 self.msg info right.roi.x offset = ...

self.msg info right.roi.y offset = ...

self.msg info right.roi.height = ...

self.msg info right.roi.width = 0

126 self.msg info right.roi.do rectify = False

127 self.msg info right.header.stamp = ...

self.msg rgb right.header.stamp

128 return self.msg info right

129

130 def CreateInfoMessageLeft(self): #left camera camera info

131 self.msg info left.header.frame id = "/leftCam link"

132 self.msg info left.height = self.msg rgb left.height

133 self.msg info left.width = self.msg rgb left.width

134 self.msg info left.distortion model = "plumb bob"

135

136 self.msg info left.D.append(CAMERA K1)

137 self.msg info left.D.append(CAMERA K2)

138 self.msg info left.D.append(CAMERA P1)

139 self.msg info left.D.append(CAMERA P2)

140 self.msg info left.D.append(CAMERA P3)

141

142 self.msg info left.K[0] = CAMERA FX

143 self.msg info left.K[1] = 0

144 self.msg info left.K[2] = CAMERA CX

145 self.msg info left.K[3] = 0

146 self.msg info left.K[4] = CAMERA FY

147 self.msg info left.K[5] = CAMERA CY

148 self.msg info left.K[6] = 0

149 self.msg info left.K[7] = 0

150 self.msg info left.K[8] = 1

151



152 self.msg info left.R[0] = 1

153 self.msg info left.R[1] = 0

154 self.msg info left.R[2] = 0

155 self.msg info left.R[3] = 0

156 self.msg info left.R[4] = 1

157 self.msg info left.R[5] = 0

158 self.msg info left.R[6] = 0

159 self.msg info left.R[7] = 0

160 self.msg info left.R[8] = 1

161

162 self.msg info left.P[0] = CAMERA FX

163 self.msg info left.P[1] = 0

164 self.msg info left.P[2] = CAMERA CX

165 self.msg info left.P[3] = 0

166 self.msg info left.P[4] = 0

167 self.msg info left.P[5] = CAMERA FY

168 self.msg info left.P[6] = CAMERA CY

169 self.msg info left.P[7] = 0

170 self.msg info left.P[8] = 0

171 self.msg info left.P[9] = 0

172 self.msg info left.P[10] = 1

173 self.msg info left.P[11] = 0

174

175 self.msg info left.binning x = self.msg info left.binning y ...

= 0

176 self.msg info left.roi.x offset = ...

self.msg info left.roi.y offset = ...

self.msg info left.roi.height = ...

self.msg info left.roi.width = 0

177 self.msg info left.roi.do rectify = False

178 self.msg info left.header.stamp = self.msg rgb left.header.stamp

179 return self.msg info left

180

181 def CreateTFMessage(self):

182 self.msg tf.transforms.append(TransformStamped())

183 self.msg tf.transforms[0].header.stamp = self.ros time



184 self.msg tf.transforms[0].header.frame id = "/world"

185 self.msg tf.transforms[0].child frame id = "/base link"

186 self.msg tf.transforms[0].transform.translation.x = ...

sim pose msg.pose.position.x

187 self.msg tf.transforms[0].transform.translation.y = ...

sim pose msg.pose.position.y

188 self.msg tf.transforms[0].transform.translation.z = ...

sim pose msg.pose.position.z

189 self.msg tf.transforms[0].transform.rotation.x = ...

sim pose msg.pose.orientation.x

190 self.msg tf.transforms[0].transform.rotation.y = ...

sim pose msg.pose.orientation.y

191 self.msg tf.transforms[0].transform.rotation.z = ...

sim pose msg.pose.orientation.z

192 self.msg tf.transforms[0].transform.rotation.w = ...

sim pose msg.pose.orientation.w

193

194 self.msg tf.transforms.append(TransformStamped())

195 self.msg tf.transforms[1].header.stamp = self.ros time

196 self.msg tf.transforms[1].header.frame id = "/base link"

197 self.msg tf.transforms[1].child frame id = "/stereo link"

198 self.msg tf.transforms[1].transform.translation.x = 0.46

199 self.msg tf.transforms[1].transform.translation.y = 0.0

200 self.msg tf.transforms[1].transform.translation.z = 0.0

201 qs = airsim.to quaternion(0,0,0)

202 self.msg tf.transforms[1].transform.rotation.x = qs.x val

203 self.msg tf.transforms[1].transform.rotation.y = qs.y val

204 self.msg tf.transforms[1].transform.rotation.z = qs.z val

205 self.msg tf.transforms[1].transform.rotation.w = qs.w val

206

207 q = airsim.to quaternion(0,pi/2,0)

208 self.msg tf.transforms.append(TransformStamped())

209 self.msg tf.transforms[2].header.stamp = self.ros time

210 self.msg tf.transforms[2].header.frame id = "/stereo link"

211 self.msg tf.transforms[2].child frame id = ...

"/leftCam optical link"



212 self.msg tf.transforms[2].transform.translation.x = 0.0

213 self.msg tf.transforms[2].transform.translation.y = −0.25

214 self.msg tf.transforms[2].transform.translation.z = 0.0

215 self.msg tf.transforms[2].transform.rotation.x = q.x val

216 self.msg tf.transforms[2].transform.rotation.y = q.y val

217 self.msg tf.transforms[2].transform.rotation.z = q.z val

218 self.msg tf.transforms[2].transform.rotation.w = q.w val

219

220 self.msg tf.transforms.append(TransformStamped())

221 self.msg tf.transforms[3].header.stamp = self.ros time

222 self.msg tf.transforms[3].header.frame id = "/stereo link"

223 self.msg tf.transforms[3].child frame id = ...

"/rightCam optical link"

224 self.msg tf.transforms[3].transform.translation.x = 0.0

225 self.msg tf.transforms[3].transform.translation.y = 0.25

226 self.msg tf.transforms[3].transform.translation.z = 0.0

227 self.msg tf.transforms[3].transform.rotation.x = q.x val

228 self.msg tf.transforms[3].transform.rotation.y = q.y val

229 self.msg tf.transforms[3].transform.rotation.z = q.z val

230 self.msg tf.transforms[3].transform.rotation.w = q.w val

231

232 qo = airsim.to quaternion(pi/2,0,0)

233 self.msg tf.transforms.append(TransformStamped())

234 self.msg tf.transforms[4].header.stamp = self.ros time

235 self.msg tf.transforms[4].header.frame id = ...

"/leftCam optical link"

236 self.msg tf.transforms[4].child frame id = "/leftCam link"

237 self.msg tf.transforms[4].transform.translation.x = 0.0

238 self.msg tf.transforms[4].transform.translation.y = 0.0

239 self.msg tf.transforms[4].transform.translation.z = 0.0

240 self.msg tf.transforms[4].transform.rotation.x = qo.x val

241 self.msg tf.transforms[4].transform.rotation.y = qo.y val

242 self.msg tf.transforms[4].transform.rotation.z = qo.z val

243 self.msg tf.transforms[4].transform.rotation.w = qo.w val

244

245 self.msg tf.transforms.append(TransformStamped())



246 self.msg tf.transforms[5].header.stamp = self.ros time

247 self.msg tf.transforms[5].header.frame id = ...

"/rightCam optical link"

248 self.msg tf.transforms[5].child frame id = "/rightCam link"

249 self.msg tf.transforms[5].transform.translation.x = 0.0

250 self.msg tf.transforms[5].transform.translation.y = 0.0

251 self.msg tf.transforms[5].transform.translation.z = 0.0

252 self.msg tf.transforms[5].transform.rotation.x = qo.x val

253 self.msg tf.transforms[5].transform.rotation.y = qo.y val

254 self.msg tf.transforms[5].transform.rotation.z = qo.z val

255 self.msg tf.transforms[5].transform.rotation.w = qo.w val

256

257 return self.msg tf

258

259 def get sim pose(self):

260 # get state of the multirotor

261 drone state = client.simGetGroundTruthKinematics()

262 pos ned = drone state.position

263 orientation ned = drone state.orientation

264 pos enu = airsim.Vector3r(pos ned.x val,

265 −pos ned.y val,

266 − pos ned.z val+9)

267 orientation enu = airsim.Quaternionr(orientation ned.w val,

268 − orientation ned.z val,

269 − orientation ned.x val,

270 orientation ned.y val)

271 # populate PoseStamped ros message

272 sim pose msg = PoseStamped()

273 sim pose msg.pose.position.x = pos enu.x val

274 sim pose msg.pose.position.y = pos enu.y val

275 sim pose msg.pose.position.z = pos enu.z val

276 sim pose msg.pose.orientation.w = orientation enu.w val

277 sim pose msg.pose.orientation.x = orientation enu.x val

278 sim pose msg.pose.orientation.y = orientation enu.y val

279 sim pose msg.pose.orientation.z = orientation enu.z val

280 sim pose msg.header.seq = 1



281 sim pose msg.header.frame id = "world"

282 return sim pose msg

283

284 if name == " main ":

285 client = airsim.MultirotorClient()

286 client.confirmConnection()

287 client.enableApiControl(True)

288 client.armDisarm(True)

289

290 rospy.init node('airsim publisher', anonymous=True)

291 publisher rgb right = ...

rospy.Publisher('/raw stereo/right/image raw', Image, ...

queue size=10)

292 publisher rgb left = ...

rospy.Publisher('/raw stereo/left/image raw', Image, ...

queue size=10)

293 publisher info right = ...

rospy.Publisher('/raw stereo/right/camera info', CameraInfo, ...

queue size=10)

294 publisher info left = ...

rospy.Publisher('/raw stereo/left/camera info', CameraInfo, ...

queue size=10)

295 publisher tf = rospy.Publisher('/tf', TFMessage, queue size=10)

296 pose pub = rospy.Publisher("airsim/pose", PoseStamped, queue size=1)

297 rate = rospy.Rate(30) # 30hz

298 pub = stereoPublisher()

299

300 while not rospy.is shutdown():

301 sim pose msg = pub.get sim pose()

302 responses = client.simGetImages([airsim.ImageRequest("1", ...

airsim.ImageType.Scene, False, False),

303 airsim.ImageRequest("2", ...

airsim.ImageType.Scene, ...

False, False)])

304 img rgb right = pub.getRGBImageRight(responses[0])

305 img rgb left = pub.getRGBImageLeft(responses[1])



306

307 pub.GetCurrentTime()

308 msg rgb right = pub.CreateRGBMessageRight(img rgb right)

309 msg rgb left = pub.CreateRGBMessageLeft(img rgb left)

310

311 msg info right = pub.CreateInfoMessageRight()

312 msg info left = pub.CreateInfoMessageLeft()

313

314 msg tf = pub.CreateTFMessage()

315

316 publisher rgb right.publish(msg rgb right)

317 publisher rgb left.publish(msg rgb left)

318 publisher info right.publish(msg info right)

319 publisher info left.publish(msg info left)

320

321 publisher tf.publish(msg tf)

322 pose pub.publish(sim pose msg)

323

324 del pub.msg info right.D[:]

325 del pub.msg info left.D[:]

326 del pub.msg tf.transforms[:]

327

328 rate.sleep()

A.2 Acquiring LiDAR data from Airsim to ROS

1 #!/usr/bin/env python

2

3 import setup path

4 import airsim

5 import pprint

6 import rospy

7 import tf

8 from std msgs.msg import String



9 from sensor msgs.msg import PointCloud

10 from sensor msgs.msg import PointCloud2, PointField

11 from geometry msgs.msg import Vector3, Point32

12 import numpy

13 import time

14

15 def lidarpcpub():

16 pub front = rospy.Publisher("/ust scan", PointCloud, queue size=10)

17 rospy.init node('lidarpcpub', anonymous=True)

18 rate = rospy.Rate(200)

19

20 # connect to the AirSim simulator

21 client = airsim.MultirotorClient()

22 client.confirmConnection()

23 simLidar = PointCloud()

24 simLidar2 = PointCloud()

25 vec = Vector3()

26

27 while not rospy.is shutdown():

28 lidarData2 = ...

client.getLidarData(lidar name="FrontLidarSensor", ...

vehicle name= "Drone1")

29 if (len(lidarData2.point cloud)< 3):

30 print("\tNo points received from Front Lidar Data")

31 else:

32 points2 = numpy.array(lidarData2.point cloud, ...

dtype=numpy.dtype('f4'))

33 points2 = numpy.reshape(points2, ...

(int(points2.shape[0]/3), 3))

34

35 #print("\tReading %d: time stamp: %d ...

number of points: %d" % (i, ...

lidarData.time stamp, len(points)))

36 #rospy.loginfo(lidarData2.point cloud)

37

38 simLidar2.header.stamp = rospy.Time.now()



39 simLidar2.header.frame id = "leftCam link"

40 simLidar2.points = []

41

42 for m in range(points2.shape[0]):

43 simLidar2.points.append(Point32(points2[m][0],points2[m][1],points2[m][2]))

44

45 pub front.publish(simLidar2)

46 rate.sleep()

47

48 # main

49 if name == ' main ':

50 try:

51 lidarpcpub()

52 except rospy.ROSInterruptException:

53 pass
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