Vision-Based Autonomous
Mapping & Obstacle Avoidance for

a Micro-Aerial Vehicle (MAV)
Navigating Canal

A Master Thesis
Presented by

Syed Izzat Ullah

In Fullfilment
of the Requirements for the Degree of
Master in Electrical Engineering

Supervisor: Abubakr Muhammad (LUMS)
Co-supervisor: Murtaza Taj(LUMS)

Syed Babar Ali School of Science and Engineering
Lahore University of Management Sciences
October 2019
(©) 2019 by Syed Izzat Ullah

Acknowledgments

In the name of Allah, the most gracious and the most merciful, I would like to extend
my heartfelt gratitude to my advisor Dr.Abubakr Muhammad for his continuous
support in completion of my MS thesis: for his indefatigable patience, motivation,
enthusiasm, and immense knowledge which helped me in accomplishment of this
thesis.

Moreover, I also owe gratitude to the National Center for Robotics & Automa-
tion (NCRA), LUMS, Pakistan for enabling me to learn, enhanced my knowledge
and make use of practical knowledge. I also thank the DAAD grant DyMaSH: “Dy-
namic Mapping and Sampling for High Resolution Hydrology” for providing me an
opportunity for learning and international exposure.

I thank my fellow labmates in Agritech and Control & Robotics lab: Abbas, Za-
hoor, Ansir, Waseem, Musab, Zafar, Shabbir, Hashim, Affan, Farooq, and Joudat
for their productive feedbacks and stimulating discussions which continuously con-
tributed towards improvement of my knowledge about the research and help me in
completing my research successfully. I find it hard to pay enough regards to my friend
Mateen for all the support and help during the difficult times.

Last but not least, my deepest gratitude goes to my beloved parents, sisters and
brothers for their endless love, prayers and encouragement. Also, not forgetting my
wife for her love and care. Thank you for supporting me spiritually throughout my
life.

I am very thankful to Allah Almighty, who bestowed his blessings over me and
helped me through all the ups and downs during this period. May He keep His

blessings over us to provide our services for the goodness of humanity.

Abstract

For optimal agriculture yields, the land designated for agriculture requires proper
irrigation. The major part of Pakistan’s irrigation system is served through canals
that are outflows of dams, barrages, and rivers. The total length of the irrigating
canal network in the Indus Basin is about 57,000 kilometers[47]. The manual labor for
inspecting and analyzing the condition of water canals and then repairing during the
closure period each year cannot be possible by laborious manual inspection. Hence,
there is a need for automation in inspection tasks related to the water channels.

The capability of moving robots in accomplishing desired tasks with the help of a
couple of sensors mounted on them, not only decreases computation time but guaran-
tees task completion as well. To be able to use robots for canal-like environments, one
requirement is obstacle avoidance. We have developed a near to real canal environ-
ment in the Unreal engine, with real textures of trees, brushes, and bridges. Various
conceivable obstacles that an aerial vehicle can confront in a canal-like environment
is added in the simulation.

Robot Operating System (ROS)[10] plays an important role in the simulation as
it offers methods and groups of useful libraries (libraries for frame transformations,
point cloud processing, visualization, and data monitoring to name a few). The Airsim
plugin[55] in the Unreal engine[11] is used to simulate the MAV in the canal. We used
Stereo_image_Proc|9] for disparity and point cloud construction, Octomap_server|61]
for Octomap Mapping, Informed RRT *[31] for path planning, and Airsim_Simple
FlightController|[55] for vehicle control.

The vehicle is capable of profiling the canal channels quickly and effectively that
will assist the human operator in surveying the canal during an annual canal closure.
The developed system autonomously flies over the canal, not only build a three-
dimensional map of the canal environment but detects obstacles in the path of the
vehicle and eventually avoid these obstacles.

This Master thesis has been examined by a Committee of the
Department of Electrical Engineering as follows:

Dr Abubakr Muhammad..........
Thesis Supervisor
Associate Professor of Electrical Engineering

Dr Murtaza Taj ...
Thesis Co-Supervisor
Assistant Professor of Computer Science

Dr Ahmed Kamal Nasir............... i
Member, Thesis Committee
Assistant Professor of Electrical Engineering

Contents

1.1

Introduction

Motivation

1.2 Problem Statement

1.3

2.1

2.2

2.3

3.1

3.2

Related Worko
1.3.1 Related Work on Obstacle Avoidance
1.3.2 Related Work on Path Planning
1.3.3 Related Work on Mapping

Sensors

Stereo Camera
2.1.1 Stereo Camera Model
2.1.2 Stereo Disparity Computation
2.1.3 Stereo Block Matching
2.1.4 ZED Stereo Camera
Light Detection and Ranging (LiDAR)
2.2.1 Hokuyo UTM-30LX LiDAR

Stereo vs LIDAR Comparison

Simulation Environment

V-REP Simulation Platform
3.1.1 Simulation Environment Build in V-REP
Unreal Engine oo

3.2.1 Simulation Environment Build in Unreal engine

X

o O A~ W N

11
12
12
13
15
16
18
20
20

3.3 Microsoft Airsim Plugin, 29

3.3.1 Airsim Multirotor 30

3.4 Comparison between Unreal engine and V-REP 32
4 Methodology 35
4.1 System Architecture 35
4.1.1 Getting Left and Right Image from Stereo camera 36
4.1.2 Airsim LiDAR datato ROS 38
4.1.3 Stereo Disparity and Point Cloud construction 39

4.2 Sensor data fusion via Concatenation 44
4.3 OctoMap mapping framework 45
4.3.1 Probabilistic sensor fusion A7

4.4 Octomap Robot Operating System (ROS) Implementation 49
4.4.1 Octomap Outputs Using V-REP Physics engine 50
4.4.2 Octomap Outputs Using Unreal engine 51

4.5 Path Planning oo 52
4.5.1 Informed RRT*, 55

4.6 Informed RRT* Robot Operating System (ROS) Implementation . . 58
4.7 Autonomous canal exploration 60
5 Experimental Results 63
5.1 Path planning evaluation 0oL 63
5.1.1 Situation 1: No obstacles 63
5.1.2 Situation 2: Hanging branches of the Tree 63
5.1.3 Situation 3: Bridge Avoidance 66

5.1.4 Situation 4: Avoidance of a tree trunk that is right above the

5.1.5 Situation 5: Canal completely stuck with obstacles 69

6 Conclusions & Future Work 71

A Airsim Codes
A.1 Acquiring Left, Right images and Vehicle Pose from Unreal-Airsim to

79

List of Figures

1-1 Mobile water quality monitoring sensor developed at Center for Water
Informatics (WIT) [15] o 2
2-1 Stereo vision camera geometry [15] L 12
2-2 Stereo camera disparity image computation [46] 13
2-3 Image output of ZED stereo camera [13] 17
2-4 ZED Stereo Camera depth visualization [13] 18
2-5 Hardware set-up for a pulsed LIDAR flight [15] 19
2-6 1D, 2D and 3D LIDARs [67] 19
3-1 V-REP scene with multiple robots is shown [42]. 25
3-2 Top view of the V-REP simulated canal complete structure 25
3-3 Close view of the V-REP canal structure 25
3-4 Tree modal of the V-REP simulated canal 26
3-5 Canal 3D mesh, build in Auto Desk and then imported into Unreal
ENEINE. oo 27
3-6 Top view of the complete canal in Unreal engine. 27
3-7 Close look of the canal in Unreal engine. 28
3-8 Close look of the canal bending in Unreal engine. 28
3-9 Close look of the bridge over the canal in Unreal engine. 28
3-10 Bridge and tilted tree at the same spot, serves as an hard obstacle. . 29
3-11 Airsim multirotor, an AR drone, equipped with sensors. 30

xiil

4-2

4-3

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12

4-13
4-14

4-15

4-16

4-17
4-18
4-19
4-20
4-21

Overall system architecture of the obstacle avoidance & mapping sys-

teIM. . . L 35

Stereo camera on the Airsim multirotor. Both cameras have same pose

and focal length.o o 37

Basic block diagram that shows the working of Stereo_Image Proc

node[9]. . ..o 39

rqt_graph showing the flow of topics through Stereo_Image Proc node. 40

Point cloud construction through stereo camera [9]. 40
Disparity Image output using V-REP simulation engine. 41
Disparity Image output using Unreal engine. 41
Point Clouds output using V-REP simulation engine. 42
Point Clouds output using Unreal engine 42
Point Clouds output using Unreal engine. 43
Stereo camera transformation w.r.t drone base. 43
tf tree transformation between Stereo camera & LiDAR to drone base

frame 44
Actual Ground Truth. 45
Visualization of the concatenated sensor data. 45

Description of a free (shaded white) and occupied (black) cell stored

in an octree (a), the corresponding representation of the tree (b), and

the corresponding compact bitstream in a directory (c) [61]. 46
An octree example of free and occupied nodes from stereo camera data,

in a canal like environment.o A7
Topics connection between nodes of our canal system using Octomap. 49
Flow chart of Octomap_Server Package 50
Octomap mapping Results using V-REP. 51
Local Octomap Results using Unreal engine. 51

Global Octomap Results using Unreal engine. 52

4-22 RRT* and InformedRRT™* solutions, same cost, and on a random world. Once an
initial solution has been found, Informed RRT™ focuses the search to optimize the
solution in the ellipsoidal subset. That’s why InformedRRT™ is finding a better

solution than RRT™ [31]. o o o

93

4-23 In arandom world problem, the solution costs for RRT™ and In formed RRT*

versus computational time [31].
4-24 In the absence of obstacles, the path planned by Informed RRT* from
start state to goal state is a straight line [31].
4-25 Flow chart of the Informed RRT* and ROS implementation.

4-26 Flow chart of the autonomous canal exploration implementation. . . .

5-1 Situation 1, where there is no obstacle In the drone path, and the path-
planning algorithm has to plan a straight path which is the shortest

5-2 Ground truth of situation 2, when there is hanging tree branches.
5-3 Planned path (front view). oL
5-4 Planned path (side view). L.
5-5 Ground truth of situation 2, when there is a more cluttered tree branches
in the path of the drone.
5-6 Drone path of situation 2.
5-7 Ground truth of Situation 3.o
5-8 Drones trajectory, passing over the bridge (front view).
5-9 Drones trajectory, passing over the bridge (side view).
5-10 Ground truth of situation 4, where the drone has to avoid tree trunk
that comes in the path of the drone.
5-11 Drone trajectory for situation 4 (Front view).

5-12 Drone trajectory for situation 4 (side view).

o4

95
29
60

64
64
65
65

66
66
67
67
68

68
69
69

Chapter 1

Introduction

Applications and uses of UAVs (Unmanned Aerial Vehicles), also colloquially known
as drones, are drawing a lot of interest in the recent years. UAVs have potential to
bring revolution in various fields like logistics, agriculture and defense, to name a
few. However, a number of research works are still needed to realize robust, smart,
and truly autonomous UAVs. Some of these challenges are concerned with obstacle
avoidance and autonomous navigation.

Given the recent innovation and research outcomes in navigation and path plan-
ning, this thesis explores opportunities to enable and improve functionalities in UAVs

using state-of-the-art techniques.

1.1 Motivation

Agriculture is Pakistan’s largest sector of the economy and seventy percent of Pak-
istan’s population is mainly dependent on agriculture. Agricultural land needs to
be efficiently and effectively irrigated for optimal agriculture yield. The total length
of the irrigating canal network is about 57,000 kilometers which is approximately
equivalent to the one and a half of the equatorial circumference of Earth [47]. Due
to improper water management, the water table rose, resulting in waterlogging and
salinity and about 25% of the irrigating area of Pakistan is being affected by it. The

manual labor for inspecting and analyzing the condition of water canals and then

repairing during the closure period each year cannot be possible by laborious manual
inspection.

Different groups have tried to use different robotics platforms to solve this problem.
One such robot could be a small scale Micro-aerial Vehicle (MAV), that has the
capability of flying in the 3D environment and navigate across overhanging trees and
other possible obstacles in the canal like environment. A vehicle equipped with a
3D perception system capable of profiling the canal channels quickly and effectively,
to assist the human operator in surveying the canal, during an annual canal closure
period, avoiding collision with the tree branches, bridges, and other possible obstacles.

Another avenue where this system could be of use in the canal-like environment
is that it can recover a floating sensor. The sensor is developed in our lab at the
center for water informatics (WIT) that spatially monitors water quality [15]. After
the sensor is released in a canal, it is difficult for a human to recover. Since this aerial
platform is able to avoid any obstacle in the canal environment so it is possible to

recover the float via this system using a robotic arm mounted on the vehicle.

Figure 1-1: Mobile water quality monitoring sensor developed at Center for Water
Informatics (WIT) [15]

1.2 Problem Statement

This thesis mainly focuses on the problem of avoiding obstacles in a 3D, cluttered,
unknown environment with a Micro-aerial vehicle MAV. The idea is to develop a flying

autonomous aerial vehicle equipped with high-resolution cameras and other sensors

that not only build a 3D map of the canal environment but also detect obstacles in

the path of drone and eventually avoid these obstacles.

1.3 Related Work

The use of MAVs in an outdoor cluttered environment such as water channels is
an active research topic with rising popularity. Multiple research groups use Micro-
aerial vehicles MAVs to obtain an overview of the water channel geometry. Others
have tried small boats, lightweight inflatable craft [30], but their systems are unable to
map the area below the canopy and above the canal banks; if the mapping sensors are
mounted at a certain altitude, the probability of collisions with the lower hanging tree
branches increases, and the vehicle will not be able to navigate the canal’s cluttered
area. On the other side, fixed-wing UAVs at higher altitudes [48] are unable to map
the area under the canal canopy, since they are mapping from higher altitudes. In
simple riverine environments, this platform could be more practical but our goal is
to build a system capable of performing in the most problematic situations such as
flowing water, blocked rivers or dense canopies of the canals. Preliminary work in
canal mapping on small multirotor using passive vision and ultrasonic sensors (for
altitude estimation) has been described over short distances [63]. Our work is in
the same way motivated but we explicitly deliberate substantially longer missions in
which it is important to not only map the magnitude of the river but also to map the
vegetation along the bank of the canal and avoid obstacles that might appear in the
middle of the canal. We focused on autonomous exploration, where onboard sensors
perceive the environment and the vehicle plans obstacle-free routes that navigate
the vehicle along the canal and perform the mapping. Similar work for autonomous
river mapping and exploration through an aerial vehicle is presented by [52], where
a separate frontal looking camera is used for river bank detection and a 2D LiDAR
with a rotating mechanism and stereo camera is used to compute the 3D structure of
the river. The system is tested on a 2km long river. However, because of having two

separate sensors for mapping and exploration requires more computations, memory,

and power.

We achieve this with simulating a stereo camera and a 2D laser scanner being the
perception sensors for local obstacle avoidance to navigate over the canal. However,
any prior information is not being used, except local goal points from the GPS, and we
rely on our local sensors for path planning and collision avoidance. The stereo camera
in our setup serves as a primary observation sensor for 3D obstacle avoidance and
mapping of the canal, LIDAR on the other hand, add some belief in the occupancy
of stereo detection in the 2D LiDAR scan around the MAV.

The focus of this thesis is Obstacle avoidance, path planning, and Mapping for a
flying platform. We will discuss the related work in each of these areas one-by-one in

detail.

1.3.1 Related Work on Obstacle Avoidance

Obstacle avoidance is a crucial capability for a Micro-aerial Vehicle (MAV) to ma-
neuver close to the trees present at low altitude. The implementation of a robust
collision avoidance system, also known as an anti-collision system, is a big challenge
to take for greater autonomy at the moment. It allows for new applications and re-
duces the pilots’ skill requirements. That is why collision avoidance is a research and
development area of interest.

Scherer [53] and Achtelika [14] uses laser scanners to detect obstacles. Gronzka
et al. ([33], [34]), who uses multilevel SLAM with motion and altitude estimation for
3D mapping, positioning, and navigation, has extended this approach. Their imple-
mentation is based on the Mikrokopter and is capable of independent flight [6]. The
Mikrokopter project began as an open-source platform but is now commercially avail-
able. Nevertheless, owing to its technical strain, data processing is not done on-board,
but on an external laptop. Another SLAM algorithm was developed by Blésch [19]
which also requires external hardware for data processing. Shen [56] combined a laser
scanner with a camera for position estimation using the closest iterative point (ICP)
algorithm and an extended Kalman filter (EKF) for data fusion. Only with on-board

equipment, his system is capable of autonomous flight and needs a 1.6 GHz Atom for

data processing. Weiss [60] is using the same system as an AscTec Pelican quadrotor
[1]. He has developed a SLAM algorithm, which includes only the on-board camera
for positioning and flight autonomy. Engel et al. ([27], [26]) introduced an EKF-
based algorithm that exploits the identification of features. His approach empowers
the parrot quadrocopter [8] to fly through 3D figures autonomously. Though, it also
requires an external laptop for processing image data. Celik [23] used a monocular
camera and US sensors to present a SLAM-based system. Gaurav et al. [38] did
experiments with optical flow for obstacle avoidance, however, a stereo vision camera
was also used to avoid collisions from straight onward zero-flow regions. Andert et al.
[16] used evidential grid-based filtering with stereo image processing, to create a map
based on stereo imagery that reactively avoided obstacles in simulation. Viquerat
et al. [59] offered a reactive method of avoiding obstacles based on Doppler radar.
Grzonka et al. [32] presented a multirotor that has the capability of simultaneous
localization and mapping (SLAM).

Becker and Bouabdallah [18] and Bouabdallah et al. ([20], [21]) used four Ul-
trasonic sensors to detect obstacles and a camera system for positioning based on
overground optical flow calculations. By controlling its position, the system is able
to avoid collisions; however, it can not cover 360 ° or control the distance and it is
also not applicable in avoiding obstacles in a canal-like environment. In comparison,
when moving in the opposite direction, Roberts [50] uses four IR sensors and avoids
collisions.

In contrast to these solutions, our system uses a stereo camera to capture the
3D-environment, generate a point cloud from the disparity images, and determine
occupied and unoccupied space through Octomap mapping. The system can suc-
cessfully detect an obstacle in the range of 25 meters and has the capability of both
obstacle avoidance and mapping simultaneously, without the constraints of a heavy

processor for computation.

1.3.2 Related Work on Path Planning

Unmanned aerial vehicle (UAV) 3D path planning aims to find an optimal and
collision-free path in a cluttered 3D environment, taking into account geometric,
physical and temporal constraints. It is the crucial element of the whole system when
defining a mission. In general, path planning attempts to produce a global path to
the target in real-time, avoid collisions and minimize a given cost function under
kinodynamic constraints [65]. There is great potential for path planning in 3D en-
vironments, but the difficulties increase exponentially with dynamic and kinematic

constraints becoming much more complex as compared to 2D path planning [65].

A few approaches are being developed over the past decades to address these
problems. Algorithms applied in 3D environments include Visibility Graph [54] de-
veloped from computer science; random search algorithms such as Rapidly Exploring
Random Tree [64] and Probabilistic Roadmap [62]; optimal search algorithms such
as Dijkstra’s [17], A* [25], and D* [22]; bio-inspired planning algorithms and etc.

The problem of motion-planning is often overcome either by first discretizing the
continuous state space with a graph-based search grid or by sampling stochastic
incremental searches. Graph-based searches, such as A* [36], are usually optimal
resolution and full resolution. They are guaranteed to find the optimum solution, if
a solution exists, and otherwise return failure (up to the discretization resolution).
Such graph-based algorithms do not scale well with problem size (e.g., problem scope

state dimension).

Stochastic searches, such as Rapidly Exploring Random Trees RRTs [43], Prob-
abilistic Roadmap PRMs [41], and Expansive-Spaces Tree ESTs [39], use sampling-
based approaches to ignore the need for state-space flexibility. It helps them to easily
scale with the size of the problem and to consider kinodynamic constraints explicitly,
but the result is a less rigorous guarantee of completeness. Probabilistically RRT’s are
complete, offering the likelihood of finding an effective solution if one is in existence,

as iterations reach infinity, approach unity [31].

To date, these sampling-based algorithms have not made any predictions about

the solution’s optimality. Simmons [58] found that using a heuristic sampling to bias
improved RRT solutions, but did not measure the results formally. Ferguson [29]
understood that the length of a solution limits potential improvements from above
and showed an iterative anytime RRT approach to solve a variety of progressively
smaller planning problems. Karaman [40] later showed that RRTs return to a sub-
optimal path with a single possibility showing that any RRT-based path can almost
definitely be suboptimal and present a new class of optimal planners. Both opti-
mal forms have been identified separately from RRTs and PRMs, RRT* and PRM*.
Such algorithms are shown to be asymptotically optimal, with the chance to find the

optimum resolution reaching unity as infinity approaches the variety of iterations.

RRTs are not asymptotically optimal because future expansion is biased by the
existing state graph. By introducing incremental rewiring of the graph, RRT* over-
comes this [31]. Not only are new states added to a tree, but they are also considered
to substitute parents for existing nearby tree states. This results in an algorithm
with uniform global sampling that finds the optimal solution to the planning problem
asymptotically by finding the optimal paths from the initial state to each state in the
problem domain asymptotically. This becomes costly in high dimensions and is also

inconsistent with their single-query nature.

A group of researcher at CMU [31] looked at the asymptotic behavior of RRT*
and presented another version of the RRT-based algorithm, called Informed RRT*.
Informed RRT* functions as RRT* until a first solution is found, after which it can
only test from the sub-state set specified by an admissible heuristic to boost the
solution. It is an improved version of RRT* that shows a clear improvement. When
the configuration becomes more complex, it demonstrates huge improvements. The
algorithm is less reliant on the dimension and domain of the planning problem as well
as the ability to find improved topologically distinct paths faster as a result of its
focused search. It is also able to find solutions with comparable computation within
tighter tolerances of the optimum than RRT*, and in the absence of obstacles, the
optimum solution can be found within system zero in the end time. It could also be

used to further reduce the search space in conjunction with other algorithms, such as

path smoothing.

In this thesis, we have implemented Informed RRT* because it is the most ap-
propriate planner according to our requirements. Mostly there are no obstacles in
the path of the canal so we need a planner to give us a straight path towards the
next goal point and Informed RRT* successfully does this. The algorithm returns a
smooth path from start to goal point avoiding all obstacles, in almost every situation

if one exists, as discussed later in Chapter 5.

1.3.3 Related Work on Mapping

In order to observe the surrounding environment, different types of map generation
methods can be used. Using a grid of cubic volumes of equal size (voxels) to discrete
the modeled area is a popular approach to 3D modeling environments. Using such a
model, Roth-Tabak and Jain [51] and Moravec [44] introduced early works. A large
memory requirement is a major drawback of rigid grids. The grid map needs to be
configured in such a way that it is at least as large as the mapped area bounding
box, regardless of the actual map cell distribution in the region. Memory consump-
tion becomes prohibitive in large outdoor scenarios or when there is a need for fine
resolutions.

Using point clouds can avoid discretization of the environment. The endpoints
returned by vision sensors such as laser range finders or stereo cameras are used in
these maps to model the space occupied in the region. Several 3D SLAM models such
as [24], [45] used point clouds. The disadvantages of this approach are that there is no
modeling of free space and unknown areas and that sensor noise or dynamic objects
can not be dealt with directly. Point clouds are therefore only suitable for sensors
with high precision. In addition, this representation’s memory consumption increases
with the number of measurements. This is troublesome because the upper bound is
not there [61].

If it is possible to make some assumptions about the mapped area, 2.5D maps will
be enough to construct the environment. A 2D grid is usually used to store the height

measured for each cell. It results in an elevation map in its most basic form where

precisely one value per cell is retained by the map [37]. However, elevation maps are
limited to one layer and are not capable of modeling bridges, underpasses, tunnels
or structures on multiple levels. This strict assumption can be relaxed by allowing
multiple surfaces per cell [57] or by using cell classes that match different structure
types [35].

In several previous methods, tree-based representations such as octrees were used.
By delaying the initialization of map volumes until measurements need to be inte-
grated they avoid one of the main drawbacks in grid systems. The mapped area does
not need to be defined in advance in this manner.

Fairfield [28] have suggested an octree-based 3D map representation. Their map
structure called Deferred Reference Counting Octree is designed to enable efficient
map updates and copying, especially in the SLAM particle filter context. However,
his method does not address multiresolution queries. Yguel [66] provided a 3D map
based on the data structure of the Haar wavelet. It’s also a multi-resolution and
probabilistic representation. However, methods of 3D modeling were not analyzed
in-depth by the authors. Unknown regions are not modeled in their analysis, and
only one virtual 3D dataset is used. It is difficult to evaluate whether this map
structure is as memory-efficient as octrees.

Finally, to the best of our knowledge, no implementation of a 3D mapping system
that resolves all the previous issues is available except the method described in [61]

and we choose this method to implement on our system.

Chapter 2

Sensors

Unlike cars that can carry heavy payloads and sensors, aerial vehicle have limitations
on the size and weight of the sensors with which they can fly. So, the first step was to
select the sensors for obstacles avoidance and mapping. There are many models and
types of obstacle avoidance sensors. For the purpose of this thesis, following sensors

were selected:
e ZED Stereo camera [13]
e Hokuyo UTM-30LX LiDAR [5]

Although in this thesis, we did not exclusively use hardware, however, the sensors
in simulation have exactly the same properties and behavior as the sensors mentioned
in this chapter.

Hokuyo LiDAR and ZED stereo camera are compact and lightweight and is ideal
sensors for an aerial vehicle. The stereo camera provides the depth information of the
3D-world through which we can map and percept the actual environment and avoid
obstacles. Since Stereo camera has lightening and other certain restrictions, LiDAR,
on the other hand, solves this problem and adds a certain probability in the detection
of stereo camera. The area around the geometric description of the vehicle up to a
certain range is covered by both Stereo camera and LiDAR, which greatly reduces

the probability of collision.

11

This work assumes that both lenses of stereo camera are perfectly aligned with

zero radial and tangential distortion.

2.1 Stereo Camera

With two lenses about the same distance apart, the stereo camera takes two images
at the same time. This actually simulates the way humans see and therefore creates

the 3D effect.

2.1.1 Stereo Camera Model

The stereo camera takes two images by the left and right camera at the same time
to achieve depth information. The cameras are placed on the same plane, and their
images overlap. The distance to any object can be determined by calculating the
difference between the location or coordinates of an object as it appears in the two
images. Knowing the focal length of the cameras and the baseline between the two
lenses, this calculation can be achieved by using similar triangles. The closer an ob-
ject is to the camera’s location, the larger the deviation in its location in the two

images. If an object point lies in both left and right images, two three-dimensional

P(XYZ)

Left camera z
Located at
(0,0,0)
Right camera
Located at
(Tx,0,0)

Figure 2-1: Stereo vision camera geometry [15]

rays can be projected back, joining the center of the camera, present in the three-
dimensional world frame and the respective identical pixel points in the left and right
image. The actual three-dimensional point in front of the camera is determined via
the intersection of both of the rays at a common pixel point P. To obtain the three-
dimensional position of an object, knowing camera parameters (i-e process for camera
calibration) and the positions of matching pixels points (i-e matching process of the

stereo camera) in both of the left and the right image.

2.1.2 Stereo Disparity Computation

The translation along the x-axis between the corresponding pixels point of the left
and right image of a stereo camera is termed as disparity. If this process is performed
pixel-wise for the entire image, then it is called the disparity image or disparity map.
Inspired by the human binocular vision system, computer vision algorithms are used
on a stereo vision camera to find depth. It relies on the two calibrated parallel images

of stereo pair and calculates depth by estimating disparities between the two images.

0
)

Depth
(2)

Camera
Plane
Focal
Length
N
Image 1

Plane

Figure 2-2: Stereo camera disparity image computation [46]

From F1g.2.2, we can see that

APQCy = NCLMI;, (2.1)

and
APQCRr = ACrNIp.

From Eq.(2.1), we know that

Z _CiQ

f o I.M’
and from Eq.(2.2)

Z_ U@
foIRM

From Fig.2.2, it is clear that
B =0CLQ — CrQ.
From Eq.(2.3) and Eq.(2.4), rewriting Eq.(2.5)
Z
B=—(IM — IrM).
f
From the definition of disparity
d= (I;M — IrM).

Hence, Eq. (2.6) becomes,

Z

B=2d.
/
fB

Z =122
d

(2.2)

(2.3)

(2.4)

(2.6)

(2.9)

Equation (2.8) shows, if we know the focal length, baseline between the two cameras of

the stereo pair, and disparity values, the depth information can easily be found. The
above discussion is applicable for pixel-wise depth computation. Different algorithms
are developed to find the disparity of a block contains many pixels. One such method

is explained below.

2.1.3 Stereo Block Matching

A customary block-matching stereo set-up produces depth estimates by finding pixel-
block matches between two images. Given a pixel-block within the left image, for
instance, the system can search through the epipolar line to seek out the most effective
match. The position of the match relative to its coordinate on the left picture, or
the inequality, permits the user to work out the 3D position of the object in this
pixel-block. One will consider a customary block-matching stereo vision system as an
exploration through depth. As we tend to search on the epipolar line for a component
cluster that matches our candidate block, we tend to area unit exploring the area
of distance aloof from the cameras. For instance, given a pixel-block within the
left image, we would begin exploring through the dextral image with an outsized
inequality, correlated with an object on the point of the cameras. As we tend to
decrease inequality (changing wherever within the right image are searching), we tend
to examine pixel-blocks that correspond to things more and more away, till reaching
zero inequality, wherever the stereo base distance is unimportant in contrast to space
away and that we can’t confirm the obstacle’s location.

The concept behind block matching is to distribute the target image into blocks
of mounted size and search the correlated block that is the best match within the
right image. The problem with mounting size blocks is that their boundaries do not
coincide with the object boundaries leading to higher prediction errors. By reducing
the size of blocks, estimations errors are often reduced however; the ensuing matching
is not good. On the opposite hand, by increasing the block size, hardiness is raised
against noise in inequality calculation however, the magnitude of estimation error
becomes high. As a result of these issues, some adaptational window block matching

algorithms are suggested.

2.1.4 ZED Stereo Camera

The ZED [13] stereo camera is among state-of-the-art, developed by Stereolab. It
requires NVIDIA graphics card with computation capability greater than 3.0 and
CUDA (6.5 and above) to do millions of parallel computations. Unlike many other
existing three-dimensional sensors, which provide a maximum range of up to Four
meters, this camera has the capability of capturing objects up to 20 meters apart at
a resolution of 1080 pixels. It is a lightweight and low-price perception sensor, that

is mostly used in autonomous drones for 3D obstacle avoidance.

Technical Specifications

ZED is a passive Stereo camera that computes inputs in the manner of human vision.
It is a compliant Universal Video Class UVC, presuming the ZED-SDK is not required
to capture the camera’s left and right video streams. However, CUDA is required in
the GPU of the host computer to compute depth maps in actual-time and to use
ZED-SDK to build applications. The technical requirements are described below.
Video

The two images of the stereo camera are synchronized, compressed, and sent as a
single side-by-side video structure. The resolution of the ZED stereo camera can be
easily changed using API and ZED explorer. The ZED video available outputs at

different FPS and resolution is shown in Table.2.1.

Mode of the video | FPS | Output
2.2K 15 | 4416x1242
1080p 30 | 3840x1080
720p 60 2560x720

WVGA 100 | 1344x376

Table 2.1: Video Output specifications provided by ZED stereo camera [13]

Depth

The ZED camera computes the depth the way our binocular vision works. Horizon-

tally separated by approx. 65mm on average [3], the left and the right human eye

== Explorer = a bt

ZED v [m Jw J o) (&) B

Oads

Disk Free Space : 23 Gb on D:f v2.0.0

Figure 2-3: Image output of ZED stereo camera [13]

have a slightly different perception of the environment around them. By comparing
these two different perceptions, the human brain can infer the depth as well as the
3D motion. Similarly, the ZED has two eyes in the form of lenses, separated by 20cm,
captures HD 3D video of the environment and then estimates the depth and motion
by comparing pixels difference in the left and right images.

For each pixel, the ZED stores a depth value (Z). The depth is measured in meters
and calculated from the left lens of the camera to the object in the environment. The

depth map is encoded in 32 bits, due to which it cannot be displayed directly.(Fig.2.4)
Size and Weight

The camera dimension is 175x30x33 (mm) and it weighs 159g.

Lens

The ZED stereo camera has a wide-angle, dual-lens with reduced distortions and {/2.0
aperture. The Field of View (FOV) of the camera is 110-degree max.

Coordinate System

To specify positions and orientations, the ZED camera uses a 3D Cartesian coordinate
system (X, Y, Z). The coordinate system can be either left-handed or right-handed.

By default, the ZED uses an image coordinate system that is right-handed with the

Figure 2-4: ZED Stereo Camera depth visualization [13]

X-axis pointing right, the positive Y-axis pointing down and the Z-axis pointing out-
ward direction from the camera

Sensors

With large 2-micron pixels, the ZED sensor resolution is 4 Mega Pixels. It also has
electronic synchronized Rolling Shutter.

Connectivity

For the best performance, ZED supports USB 3.0. Also, it is powered via USB
(8V/380 mA).

2.2 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) measures the distance to an object by calcu-
lating the time of flight of a pulse needed to travel to an object and reflecting back
to the sensor. They usually work in the near-infrared spectrum and some can work
outdoors at ranges varying from a few meters to several hundred meters.

A LiDAR can measure a single point (i-e., 1D LiDAR) as shown in Fig.2.6(a), a
plane of points (i-e., 2D LiDAR) shown in Fig.2.6(b), or measure multiple planes to

scan the complete environment area around it (i-e., 3D LiDAR) shown in Fig.2.6(c).

O‘TX‘
O []— =

Figure 2-5: Hardware set-up for a pulsed LIDAR flight [15]

The one-dimensional can be useful in detecting a frontal plane but can not be used
for navigation purposes, while a two-dimensional LiDAR, because it covers the en-
tire plane can be used for the navigation of ground robots with certain limitations
as it can not infer any information above and below the LiDAR scan. The three-
dimensional LiDAR, has the capability of analyzing the environment both vertically
and horizontally at the same time. Since aerial vehicle moves in the 3D world so the
ideal sensor for navigation in a 3D environment would be 3D LiDAR but because of
its heavyweight and high cost one can not use it for aerial vehicle navigation. The
LiDAR works by continuously rotating a laser beam around the scan area and then
reading the returned signal reflected from the obstacles. The output is generated in
the form of a polar coordinate that contains range values and angle at which those
ranges returned. Range values are the distance between the sensor and the object or

obstacle at which the laser beam is reflected.

(a) Hokuyo Lidar (b) RPLIDAR (c) Lidar Lite

Figure 2-6: 1D, 2D and 3D LIDARs [67]

2.2.1 Hokuyo UTM-30LX LiDAR

Hokuyo UTM-30LX [5] is used in this research. It has a 240° FOV and about 0.36°
angular resolution. The range of Hokuyo UTM-30LX ranges from zero to 30 meters.
With increasing range, the width of the cone grows. It operates at 10 HZ and collects
data in sweeps, each with N laser measurements. This LiDAR can not provide any
information about the intensity of the pulses. A range measurement r; at angular

measurement ¢; in iy, laser measurement can be found as

For mapping applications, the whole FOV is not required as measurements provide
information when hitting the object. Hence, the FOV can be taken limited to [min,
max|. The range and bearing data from the LiDAR can be transformed into Cartesian

coordinate by the following relation,

X 75 cos(;)
Y, r; sin(¢;)

2.3 Stereo vs LIDAR Comparison

Stereo vision camera and LiDAR are both used in autonomous vehicles, obstacle
detection and collision avoidance. The main differences between both the sensors
are summed up in T'able.4. From the table, we can see that, the pros of one sensor
are actually the cons of the other and vice versa. Like the stereo camera cannot
directly observe obstacles while the LIDAR does. Similarly, LIDAR operates at a
low frequency while the stereo camera can operates at high frequency. Hence, to
have an enrich and robust obstacle avoidance system, both of the sensors should be

incorporated.

Stereo-Vision Camera

LiDAR

Pros: | High Resolution Directly Observes Obstacles
High Frequency Large Horizontal FOV
Inexpensive Easier to Simulate
Covers 3D environment Do not Require external Lighting

Cons: Cannot Directly Observe Obsta- Low Resolution

cles

Generally Small Horizontal FOV

Low Frequency

Difficult to Simulate

Expensive

Requires external Lighting

Obstacles above or below the scan-
ning plane are invisible

Table 2.2: Comparison between Stereo camera and LiDAR

Chapter 3

Simulation Environment

This chapter [49] describes the simulation environment and tools for performing ex-
periments with the algorithm described in Chapter 4. To implement the mapping
and obstacle avoidance, a robotic platform was needed. A setup to simulate a 3D
environment and a drone with a stereo camera, LIDAR and other sensors had to be
built. A system that can be easily configured to operate with a real sensor and a real

drone rather than a simulated one, if needed.

It was clear from the outset that ROS (Robot Operating System) [10] would play
a role in this simulation environment, mainly because it provides a decentralized com-
munication middleware and provides an infrastructure that allows components to be
easily connected and facilitates the modular design. It also offers methods and groups
of useful libraries (libraries for frame transformations, point cloud processing, visual-
ization, and data monitoring to name a few). Besides that, ROS is well established

in the robotic community and we have had previous experience with it.

A simulator is the core part of the simulation process. The main requirement
was the simulator’s ability to simulate a 3D environment. Two simulator candidates
Unreal Engine [11] and V-REP [12], are considered and compared. The next section
briefly characterizes both. The intended objectives of this thesis are achieved with
both of the simulation platforms. The 3D environment in the Unreal engine is more

realistic than in V-REP, hence the Unreal engine is chosen.

23

3.1 V-REP Simulation Platform

V-REP is a simulator of robotic systems designed around a versatile architecture
that is adaptive. V-REP has various relatively independent functions, features or
more elaborate APIs, which can be activated or deactivated as desired. A distributed
control architecture is obtained by enabling an integrated development environment:
each object/model can be managed individually via an embedded script, a plugin, a
ROS node, a remote API server, or a custom solution. In C / C++, Python, Java,
Lua, Matlab, Octave or Urbi, controllers can be written.

V-REP encapsulates several calculation modules that can work directly on one or

more items in the scene. Such modules for calculation include,

e the module for collision detection,

the module for minimum distance calculation,

the module for forward and inverse kinematics calculation,

the module for physics or dynamics,

the module for path or motion planning.

V-REP is easy to use. It has a rich graphical user interface. The GUI and the built-
in scripting feature have two ways to modify the simulation’s different aspects. V-REP
includes many features and computing modules, most of which are programmatically
accessible. Nonetheless, the API is inspired by V-REP’s GUI design and the user

needs to manipulate objects in the GUI in a very similar manner.

3.1.1 Simulation Environment Build in V-REP

Initially, we start working on building our canal simulation environment in the V-REP
physics engine. As shown in Fig.(3.2),(3.3), and (3.4), the total length of the canal
was about 1 km, with a single type of tree modal, imported in V-REP. With this
length of the canal the processor and memory consumption reaches its peak because

of the ray casting process and fewer graphics support.

2s@addddoc

[]
]
L :
UF
w W "[M It
M'ly..v"
L e
g &”’ J\y*:]l-
Figure 3-1:

V-REP scene with multiple robots is shown [42].

Figure 3-2: Top view of the V-REP simulated canal complete structure

Figure 3-3: Close view of the V-REP canal structure

Figure 3-4: Tree modal of the V-REP simulated canal

3.2 Unreal Engine

Unreal engine is an open-source gaming engine, developed by Epic Games [11] and
is released in March 2014. It supports Windows, MacOS, and Linux. Because of
its huge community, it has a high availability of free plugin and extensions (e-g,
ROS). It has full access to the C++ source code and can be modified to fit one’s
own specific needs. Having access to the Unreal engine marketplace, it has a huge
variety of available assets where many are free and almost everything can be found
which saves time and money. Assets from most of the modeling software can be
easily imported. It also uses the blueprint system, which is a node-based interface
in which functions and variables can be connected via drag and drop. The blueprint
system allows to create simple or complex behaviors without having to write C++4
code, many functions are already implemented. This can speed up implementation
and allows for quickly executed experiments. Unreal engine huge environments can
be created with features such as fog, rain, water, vegetation, etc. while maintaining
good performance the realism of these can be tuned in regards to need, performance,
and available time and budget. Unreal engine is a very complex software, but easy
to get started with and has a huge depth. It also has a sequencer, which allows
creating professional or cinematics photo-real rendering in real-time. However, the

only constraint it offers is a powerful PC to run, especially the graphics card.

3.2.1 Simulation Environment Build in Unreal engine

The total simulation environment built in this thesis consists of a total length of 2, 378
meters that contains eight different types of tree structures, brushes, branches, and
bridges (F'ig.3.6 — 3.9 depicts the same). The 3D canal mesh is shown in F'ig.3.5 that
is build in Autodesk [2] and then imported to the Unreal engine. Using the spline
tool in the Unreal engine, the canal mesh is expended to a closed-loop. With its 3.5m
height, 6 to 9m width, and the cemented textures make the 3D canal looks like an

actual canal structure in the simulation environment.

Figure 3-5: Canal 3D mesh, build in Auto Desk and then imported into Unreal engine.

Figure 3-6: Top view of the complete canal in Unreal engine.

vave M il ko] 1

.-_‘__——-"'I.— -

Figure 3-9: Close look of the bridge over the canal in Unreal engine.

Obstacles in the Simulated Canal environment

Since the objective of the thesis is obstacle avoidance and navigation of an aerial
vehicle in the canal environment. In the canal, obstacles can be brushes, branches,
trunks, and bridges. Hence, for our path-planning problem, we build a bridge and
tilted tree at the same spot (Fig.3.10), so that it can serve as a tough obstacle for

our drone to navigate through.

Figure 3-10: Bridge and tilted tree at the same spot, serves as an hard obstacle.

3.3 Microsoft Airsim Plugin

AirSim [55] is a simulator based on Unreal Engine for aerial vehicles, cars and more.
It is open-source, cross-platform, and supports hardware-in-loop simulations with
famous flight controllers such as PX4. It is built as an unreal plugin that can be
dropped into any unreal environment. Airsim was developed as a platform for Al
research to experiment with autonomous vehicles with deep learning, computer vision,
and improving learning algorithms. For this reason, AirSim also exposes APIs for

independent platform recovery of data and control vehicles.

3.3.1 Airsim Multirotor

Fig.3.11 shows an airsim AR drone modal that is equipped with many common
robotics sensors. The vehicle model includes parameters such as mass, inertia, coef-
ficients for linear and angular drag, coefficients of friction and restitution, which is
used by the physics engine to compute rigid body dynamics and the real world drone
exhibits these parameters. The dimension of the drone is 1x1, that is its length and
width are 1m each. The drone is equipped with several perception sensors, such as
a vertical and a horizontal scanning LiDARs, five cameras that are mounted around
the drone; three at the front, one at back, and one camera at the bottom center.
The drone also has localization sensors such as GPS, IMU, barometer, Gyrometer,

magnetometer, and accelerometer.

Figure 3-11: Airsim multirotor, an AR drone, equipped with sensors.

By adding the following lines in the setting.json file, the vehicle type for the

simulation is automatically set to multirotor.

"SettingsVersion": 1.2,

“SimMode” : “Multirotor”,

Airsim Multirotor Flight Control

AirSim has an integrated flight controller called simple flight, which is used by default.
To use or customize it, you do not have to do anything. AirSim also supports PX4
for advanced users as another flight controller. The vehicle control through simple
flight controller can be achieved by inputting in the desired velocity, angle, or position
information. One of these modes can be used to define each control axis. Internally
simple flight uses a PID controller cascade to essentially produce actuator signals.
This implies PID location drives the PID velocity, which drives the PID angle level,

which finally drives the PID angle frequency.

Airsim flight control configuration

To use AirSim simple flight, we can define it in settings.json as shown below. This
is by default enabled, so we do not necessarily have to do it.
‘‘Vehicles": {
“SimpleFlight”: {

“VehicleType”: “SimpleFlight”,

Airsim Available Sensors for Multirotor

The following sensors are currently supported by AirSim: Camera, IMU, Magnetome-

ter, GPS, Distance, Barometer, and LiDAR.

Configuration of Sensors

The sensors for Airsim multirotor can be enabled by adding the following lines into
the settings.json file
‘‘DefaultSensors": {
“Barometer”: {

“SensorType”: 1,

“Enabled” : true

2

“Gps”: {
“SensorType”: 1,
“Enabled”: true

1

“Lidar1”: {
“SensorType”: 6,
“Enabled”: true
“Number0fChannels”: 16
“PointsPerSecond”: 10000

2

“Lidar2”: {
“SensorType”: 6,
“Enabled”: false
“Number0fChannels” : 4

“PointsPerSecond” : 10000

3.4 Comparison between Unreal engine and V-REP

A brief comparison between the two simulation platforms is described in the form of
a table in Table.3.1. Both V-REP & Unreal engine supports sensors such as stereo
camera, LIDAR, GPS, and IMU. V-REP can be used in less computing machine but
Unreal engine requires powerful machine and graphics card to simulate an environ-
ment. V-REP is not meant for a large scale environments while Unreal engine does

supports.

Unreal engine

V-REP

Developed by Microsoft

Developed by Coppelia Robotics

It has weather effects such as Rain, Wind,
Pollen, Dust, Fog, and temperature

It has only Temperature sensing and fog effects

It has robotics sensors such as LiDAR, IMU,
Barometer, GPS, Magnetometer, and US

Mostly common sensors available

Simulator for drones, cars and more, built on
Unreal Engine

Simulator specifically developed for robotics
applications

open-source, cross-platform, and supports

hardware-in-loop

open-source, cross-platform, and does not sup-
port HIT

Can be integrated with ROS

ROS Integration available

Table 3.1: Comparison between Unreal engine and V-REP.

Chapter 4

Methodology

4.1 System Architecture

The overall system architecture is shown in F'2g.4.1. The system is divided into three

main blocks; Observation sensors, Mapping, and Decision and Control.

......................................

Mapping

Left Image
: Callb:atlon Disparity Stereo Point ’ ‘ Data ’
Rectification Map Cloud Transformation

Right Image
| Stereo Raw Images | PCL Fusion

LiDAR Raw [LipaR Point Data .
Data L Cloud Transformation P

Observation Sensors

[Low Level e PLann“"‘E
Control ’ [Obstacle Avoidance J :

~ Decision making & Control

Figure 4-1: Overall system architecture of the obstacle avoidance & mapping system.

1. Observation Sensors: A 2D LiDAR and a stereo camera are used as observation
sensors to percept the actual environment. The raw images and camera information

of both cameras are transported to the second block for further processing.

35

2. Mapping: This block of the system provides a three-dimensional environment map.
The images from both the camera sensors are first calibrated and rectified. Next, both
rectified images are processed to construct a disparity image and point cloud data of
the objects in the camera field of view in the world. At this stage, we have data in
the stereo coordinate system, we need to collect the point cloud data and transform
it to a common frame of reference, which in our case is the world coordinate system.
Similarly, the LiDAR scan is collected, converts them into point clouds and then
again transforms it into the same common frame of reference, the world coordinate
system. Both point cloud data at this stage is at the same frame of reference, what we
have to do now is to combine both point clouds, in order to incorporate both sensors
detection, have a robust, and enrich obstacle detection representation. Now our data
is ready to be used for mapping. We used Octomap mapping [61] for 3D mapping of
the canal environment.

3. Path planning & control: The third block of the system is primarily responsible
for path planning and low-level control after the map is being generated.

We will explain each of them one by one in detail in the succeeding sections.

4.1.1 Getting Left and Right Image from Stereo camera

Like human binocular vision, the stereo camera has two cameras with two lenses that
can capture images simultaneously. In the same way, we use the front left and front
right cameras of the Airsim multirotor as a stereo camera and the baseline between
them is kept 20mm as shown in Fig. 4.2.

Getting images from airsim camera sensor to ROS includes two types of configu-
rations:

The first step to getting an image from the airsim camera to the Unreal engine
is done by enabling camera sensors, defining the type of image the camera has to
generate, and setting their properties in settings. json file. This is done by simply

adding the following lines in the settings. json file:

¢ ‘Cameras’’:

20mm
|

—

Figure 4-2: Stereo camera on the Airsim multirotor. Both cameras have same pose
and focal length.

‘‘CameraName’’: “1”, “ImageType”: “0”, “PixelAsFloat”: “true”, “Compress”’: “true’}

“CameraName”: “2” “ImageType”: “0”, “PixelAsFloat”: “true”, “Compress”: “true”}

This will enable camera sensors and set the type of image the camera has to cap-

ture. For image properties, we have to add the following lines

‘‘CameraDefaults’’: {

‘‘CaptureSettings’’: “1”
{
“ImageType”: “0”
“Width”: “640”
“Height”: “480"
“FOVDegrees”: “120”
“AutoExposureSpeed”: “100”
“AutoExposureBias”: “0”
“AutoExposureMaxBrightness”: “0.64"
“AutoExposureMinBrightness”: “0.03"
“MotionBlurAmount”: “0”
“TargetGAmma”: “1.0”

“ProjectionMode”:

“OrthoWidth”: “5.12"

}

After setting these configurations, we are able to receive left and right rectified
images in the Unreal engine.
The next step is to publish the images to ROS using airsim APIs.
responses = client.simGetImages([airsim.ImageRequest(0, airsim.ImageType.Scene)])

Where the first argument “0” represents the png format of the image.

4.1.2 Airsim LiDAR data to ROS

Airsim multirotor has two built-in LiDARs. Like in the case of a stereo camera, to

get LIDAR scans we have to set settings. json file and add the following lines.

‘“frontLidarSensor’’: {

‘“‘SensorType’’: 6,

‘‘Enabled’’: false,
“NumberOfchannels”: 1,
“RotationsPerSecond”: 25,
“Range”: 30,
“X'.0,4y"1, ¢z — 1,
“Ro11”: 0, “Pitch”: O,
“VerticalFQVUpper”: —1,
“VerticalFOVLower”: 1,
“HorizontalFOVStart”: — 90,
“HorizontalFOVEnd”: 90,
“DrawDebugPoints”: false,

“DataFrame” :

The data from the Unreal engine is published on a ROS topic using standard ROS
publisher method.

4.1.3 Stereo Disparity and Point Cloud construction

For disparity image computation and point cloud generation, we use Stereo_Image Proc
[9], the node that creates a stereo image pipeline. Stereo_Image Proc rectifies raw
image pairs of the stereo camera. It may also conduct stereo processing to produce
disparity images and point clouds. We need in the .launch file , remapping of the
following topic names:

<launch>

<node pkg=‘‘stereo_image proc’’ type=‘‘stereo_image_proc’’ name=‘‘’’
respawn="‘‘true’’>

<remap from=‘‘left/image raw’’ to=‘‘/raw_stereo/left/image raw’’ />
<remap from=‘‘left/camera_info’’ to=‘‘/raw_stereo/left/camera_info’’ />
<remap from=‘‘right/image raw’’ to=‘‘/raw_stereo/right/image raw’’ />
<remap from=‘‘right/camera info’’ to=‘‘/raw stereo/right/camera info’’ />
</node>

</launch>

left/
image_mono [Image]
image_color [Image]
image_rect [Image]

lmage,_faw [image) rigi:]\:?ge_rect_color [Image]

left/
camera_info [Camerainfo]

camera

Cam — image_mono [Image]
driver image_color [Image)
stereo image_rect [Image]

image_ image_rect_color [Image]

L
proc disparity [Disparitylmage)
/ image_disparity [Image]
Cam camera points [PointCloud]
driver right/

camera_info [Camerainfo]
image_raw [Image]

Figure 4-3: Basic block diagram that shows the working of Stereo_Image Proc
nodel9].

For this setup, a simple basic block diagram is given in F'ig. 4.3. It subscribes

to left, right images of the stereo pair and left, right camera information topics.

After processing, the node publishes left, right rectified images, mono_color images,
disparity image, and point cloud as output, as can be seen from Flig. 4.3. Fig. 4.4

shows a complete rqt_graph showing the full flow of the Stereo_Image Proc setup

in the ROS system.

Irepfright/image_mono
rep/leftimage_mono
Nrep/right/image_rect
Nrepfleft/image_raw
Nvrepileft/image_rect
Irep/right/image_raw Ivrep/sterec_Image_proc
Irepfleftimage_color
frep Ivrep/right/camera_info
Arepfleft/image_rect_color
repflefticamera_info
Nrep/disparity
Ivrep/stereo_points2

Figure 4-4: rqt_graph showing the flow of topics through Stereo_Image Proc node.

The left imager optical frame (X Up, Y Down, Z out) produces point clouds.

Left
Imager

Figure 4-5: Point cloud construction through stereo camera [9].

Disparity Image Output Using V-REP Simulation

The disparity image output using V-REP physics engine is shown in F'ig. 4.6.

(a) Ground Truth (b) Disparity Image

(c) Left Image (d) Right Image

Figure 4-6: Disparity Image output using V-REP simulation engine.

Disparity Image Output Using Unreal Engine

The disparity image output using Unreal engine is shown in Fig. 4.7.

(c) Left Image (d) Right Image

Figure 4-7: Disparity Image output using Unreal engine.

Point Cloud Output Using V-REP Simulation

Stereo point clouds with different representations along with actual ground truth are

shown in F'ig. 4.8. The Stereo_Image Proc provides stereo point clouds computed

from disparity images.

(a) Ground Truth (b) PCL RGB Color Representation

(c) PCL Mono Color Representation (d) PCL Intensity Representation

Figure 4-8: Point Clouds output using V-REP simulation engine.

Point Clouds Output Using Unreal Engine

The point clouds output using Unreal engine is shown in Fig. 4.9 & 4.10.

"

(a) Ground Truth (b) PCL RGB Color Representation

Figure 4-9: Point Clouds output using Unreal engine

(a) PCL Mono Color Representation (b) PCL Intensity Representation

Figure 4-10: Point Clouds output using Unreal engine.

Stereo Camera point cloud Transformation

The point cloud collected from the stereo camera after computing disparity image is
in the stereo frame of reference. However, between our stereo camera and the vehicle
or its base frame, we need to publish the frame transformation. Point cloud from left
and right camera frame is transformed to the stereo frame which is the center of both
the cameras. The stereo frame is then transformed into the multirotor frame which
in our case is base frame, and it is the center of the multirotor as can be seen from
Fig.4.11 & Fig.4.12. The best way to achieve this transformation is by using the ROS

tf package .

Base frame
X: 0.26m
Y. 0.25m

Z: 0.00m

Right camera

frame

Left camera

~—
frame

e X: 0.26m

¥: 0.25m

¥: 0.25m
i Z: 0.00m
Stereo frame
X: 0.36m
¥: 0.25m

Z: 0.00m

Figure 4-11: Stereo camera transformation w.r.t drone base.

view_frames Result

Recorded at time: 1555337895.224

Broadcaster: /my_tf2_broadcaster
6289 Hz

37895.123 (0.100 sec old)
4.770 sec

Broadcaster: fmy_t2_broadcaster
Average rale: 6,289 Hz
Most recent transform: 1555337895.123 (0.100 sec old)
Buffer length: 4.770 sec

Broadeaster: /my_tf2_broadcaster
Average rale: 6.289 Hz
Most recent transform: 1555337895123 (0.100 sec old)
Bulffer length: 4.770 sec

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz
Most recent transform: 1555337895123 (0.100 sec old)
Buffer length: 4.770 sec

Broadcaster: /my_tf2_broadcaster
Average rate: 6.289 Hz
Most recent transform: 1555337895.123 (0.100 sec old)

Buffer length: 4.770 sec

Figure 4-12: tf tree transformation between Stereo camera & LiDAR to drone base
frame

LiDAR Point cloud Transformation

Since LiDAR is mounted on the top of the multirotor, the point cloud generated by
LiDAR also needs to be transformed to the base frame. LiDAR in Airsim multirotor
is mounted at the center of the vehicle with a shift along the z-axis. Again, using the

same ROS tf package , we transformed data from LiDAR frame to base frame.

4.2 Sensor data fusion via Concatenation

Uptill now, we have data from both the sensors in the same frame of reference. Now
we need to combine them to have a reliable collision detection system to incorporate
both sensors detection. We concatenate the data by implementing the below method.

The ground truth and its result are shown in Fig. 4.13 & 4.14

concatPcl=stereoPcl;

concatPcl+=LidarPcl;

Figure 4-13: Actual Ground Truth.

Figure 4-14: Visualization of the concatenated sensor data.

4.3 OctoMap mapping framework

Octomap mapping uses a tree-based representation to provide maximum flexibility in
the mapped region and resolution. To ensure updatability and cope with sensor noise,
it conducts a probabilistic occupancy calculation. In addition, compression methods
ensure the compactness of the resulting models.

Octree

An octree is a hierarchical 3D spatial classification data structure. The space found
in a cubic volume, usually called a voxel, is defined by each node in an octree. This
volume is subdivided recursively into eight sub-volumes until, as shown in F'ig.4.15,
a given minimum voxel size is achieved. The minimum size of the voxel determines
the octree’s resolution. Since an octree is a hierarchical data structure, if the inner

nodes are preserved correctly, the tree can be split at any point to obtain a coarser

subdivision.

Octrees can be used in its most basic form to model a Boolean property. This is

@:00=U

(0:01=F

@®:10=0

unknown O:11=pP

©
ol 1 I+16] | JO
olojel 10] I 1)
OOOO(%...

O
|01|00{00|11 01]00{00]|01

[e]feXiel[+1[e1[1L (]
01j01101}11 |01} 00/ 00|00

. (a) Q Q
occupied o1[o1]o1]011 01 00| 0o] 10

()

Figure 4-15: Description of a free (shaded white) and occupied (black) cell stored in
an octree (a), the corresponding representation of the tree (b), and the corresponding
compact bitstream in a directory (c) [61].

generally a volume occupancy in the sense of robotic mapping. The corresponding
node in the octree is initialized if a certain volume is counted as occupied. Any
uninitialized node in this Boolean setting may be free or unknown. The developers[61]
of the Octomap has specifically represented free volumes in the tree in order to resolve
this confusion. These are created along a ray determined with raycasting in the
area between the sensor and the measured endpoint. Implicitly modeling regions of
undefined space is not initialized. An octree example of free and occupied nodes from
stereo camera data can be seen in F'ig.4.16. Having Boolean occupancy states or
discrete labels allows the octree to be compactly represented: if all children of a node
have the same state (occupied or free) they can be pruned. This results in a major
reduction in the number of nodes to be held in the list.

Octomap mapping provides ways to combine the compactness of octrees using

discrete labels with probabilistic modeling updates and versatility.

Figure 4-16: An octree example of free and occupied nodes from stereo camera data,
in a canal like environment.

Because of the tree structure, octrees require overhead in terms of data access
complexity relative to a fixed-size 3D grid. The complexity of O(d) = O(log,,) can be
performed with a single random query on a tree data structure containing n nodes
with a tree depth of d. Traversing the entire tree in a depth-first way requires O(n)
complexity. An octree is limited to a defined total d,,,, depth in practice. This
results in O(dq,) complexity of a random node search with d,,,, constant. Thus,

the overhead relative to a similar 3D grid is constant for a fixed depth d,,.

4.3.1 Probabilistic sensor fusion

Sensor readings are combined with occupancy grid mapping in Octomap mapping.
The probability of occupying the P(n) of a leaf node n provided the measurements

of the sensor z.; is calculated by

1—P(nlz) 1 — P(n|lz4—1) P(n)
P(n|z) P(n|z141) 1— P(n)

P(nlziy) = |1+ (4.1)

This update equation depends on z; which is the current measurement, P(n) which
is a prior probability, and P(n|z;.;—1) which is the previous estimate of a node leaf
n. P(n) is the term that refers to the likelihood of occupying voxel n given the z

measurement. This value is unique to the sensor that has provided z;.

L (n|z14) = L(n|z14-1) + L(n|z), (4.2)
where,
L(n) =log . fig()n) (4.3)

This update rule formulation allows quicker updates as multiplications are re-
placed by additions. This update rule formulation allows quicker updates as multi-
plications are replaced by additions. The logarithms do not need to be determined
during the update process in the case of pre-computed sensor models. Remember
that log-odds values can be translated to probabilities and therefore store this value
for each voxel instead of the likelihood of occupancy vice versa and Octomap. It is
worth noting that this probability change has the same impact as counting hits and
misses for certain sensor template configurations that are symmetrical, i.e. nodes

being updated as hits have the same weight as those updated as misses.

A limit on the occupancy probability P(n|z1;_1) is often applied when a 3D map
is used for navigation. When the threshold is reached, a voxel is considered to be
occupied and is otherwise presumed to be free, thus creating two discrete states. From
eq. (4.4) It is clear that, in order to change the voxel state, we need to incorporate as
many observations as have been incorporated in order to define its currency. In other
words, if a voxel has been observed free for k times, it should be observed occupied
at least k times before it is considered to be occupied by the threshold (assuming free

and occupied measurements are equally likely in the sensor model).

4.4 Octomap Robot Operating System (ROS) Im-

plementation

The Octomap_server [61] ROS package is used in this work, which calculates and
publishes OctoMaps as ROS messages octomap msgs/Octomap .

Octomap is incorporated into ROS so that in a ROS environment, 3D octree oc-
cupancy grid maps can be created from 3D point cloud data. Octomap developers
provide a map server for the ROS system which subscribes to point cloud published
on ROS and creates a map using the tf library localization. The rqt_graph of Oc-
tomap_mapping is shown in the Fig.4.17. A stereo camera is used to publish the
3D point cloud data to the Octomap ROS node in the /stereo/points topic. On
/tf topic, the transformations between sensor and map frames are published that
actually represent the relative transformation between stereo and map frame. The
node also provides services for visualizing and saving the map to disk. Flow chart of

the ROS Octomap package, Octomap_server is shown in Fig.4.18.

Ivrep/stereo_points2

ML Joccupied_cells_vis,_array

Figure 4-17: Topics connection between nodes of our canal system using Octomap.

The following topics are being published by octomap server:
octomap_binary : A compact binary version of the OctoMap that has octomap msgs/0Octomap
message type and stores only Free and occupied voxel states.
octomap_full : Octomap_full is octomap -msgs/Octomap type of topic that publishes
the full state of the OctoMap.
occupied_cells_vis_array : Occupied cells_vis_array isavisualization msgs/
MarkerArray type of topic that is used to visualize occupied voxels in RVIZ.
free_cells vis_array : free cells vis_array isavisualization msgs/MarkerArray

type of topic that is not published but can be enabled with the publish free space

raycast

for(0<i<N)

i
' s s .

| calculate initialize
I e

' probability vaxel

'

COMPress
octree

Figure 4-18: Flow chart of Octomap_Server_Package

parameter.

octomap_point_cloud centers : The middle points as a point cloud of all the filled
voxels. Since there is no volume in a point cloud (as opposed to the box markers used
in occupied cells vis array), there will be differences between voxel center points in
the visualization. With the different voxel size resolutions, the gaps vary in size.
projected map : A type of nav.msgs/OccupancyGrid that generates a 2D down

projected occupancy map of the 3D OctoMap.

4.4.1 Octomap Outputs Using V-REP Physics engine

Local and global map of the canal environment using V-REP is shown in Fig.4.19.

(b) Local Octomap of the canal

y,

vt : \ \ .,

(c) Global Octomap(Side view) (d) Global Octomap(Top view)

Figure 4-19: Octomap mapping Results using V-REP.

4.4.2 Octomap Outputs Using Unreal engine

Local Map

During the experiment an environment scene that contains a bridge and a fallen
tree at the same location to analyze the 3D local map of both hard obstacles such as
bridge and cluttered obstacles like trees. Both types of objects are fully and efficiently
mapped, which can be seen from Fig.4.20(a)(b).

(a) Local Ground Truth (b) Local Octomap of the canal

Figure 4-20: Local Octomap Results using Unreal engine.

Global Map

Fig.4.21(a) & (b) shows the actual ground truth and the global map of the simulation
environment. While mapping, the velocity of the drone was 3.6km/h, it took 39.63

minutes to complete the canal mapping and consumed 184.9M B of memory.

(a) Actual complete canal environment (b) Global map of canal environment

Figure 4-21: Global Octomap Results using Unreal engine.

4.5 Path Planning

The problem of motion-planning is often overcome either by first discretizing the
continuous state space with a graph-based search grid or by sampling stochastic
incremental searches. Graph-based searches, such as A* [36], are usually optimal
resolution and full resolution. They are guaranteed to find the optimum solution, if
a solution exists, and otherwise return failure (up to the discretization resolution).
Such graph-based algorithms do not scale well with problem size (e.g., problem scope
state dimension).

Stochastic searches, such as Rapidly Exploring Random Trees RRTs [43], Prob-
abilistic Roadmap PRMs [41], and Expansive-Spaces Tree ESTs [39], use sampling-
based approaches to ignore the need for state-space flexibility. It helps them to easily
scale with the size of the problem and to consider kinodynamic constraints explicitly,
but the result is a less rigorous guarantee of completeness. Probabilistically RRT’s are
complete, offering the likelihood of finding an effective solution if one is in existence,

as iterations reach infinity, approach unity [31].

(b) Informed RRT*

Figure 4-22: RRT* and InformedRRT* solutions, same cost, and on a random world. Once an
initial solution has been found, InformedRRT* focuses the search to optimize the solution in the
ellipsoidal subset. That’s why InformedRRT™* is finding a better solution than RRT™ [31].

To date, these sampling-based algorithms have not made any predictions about
the solution’s optimality. Urmson and Simmons [58] found that using a heuristic
sampling to bias improved RRT solutions, but did not measure the results formally.
Ferguson and Stentz [29] understood that the length of a solution limits potential
improvements from above and showed an iterative anytime RRT approach to solve a
variety of progressively smaller planning problems. Karaman and Frazzoli [40] later
showed that RRT's return to a suboptimal path with a single possibility showing that
any RRT-based path can almost definitely be suboptimal and present a new class of
optimal planners. Both optimal forms have been identified separately from RRT's and
PRMs, RRT* and PRM*. Such algorithms are shown to be asymptotically optimal,
with the chance to find the optimum resolution reaching unity as infinity approaches
the variety of iterations.

RRTSs are not asymptotically optimal because future expansion is biased by the
existing state graph. By introducing incremental rewiring of the graph, RRT™ over-
comes this [31]. Not only are new states added to a tree, but they are also considered
to substitute parents for existing nearby tree states. This results in an algorithm

with uniform global sampling that finds the optimal solution to the planning problem

asymptotically by finding the optimal paths from the initial state to each state in the
problem domain asymptotically. This becomes costly in high dimensions and is also
inconsistent with their single-query nature.

In this thesis, we concentrated on the issue of optimal route planning as it concerns
reducing the length of the path in R". For such problems, the inclusion of states from
an ellipsoidal subset of the planning domain is a necessary condition of improving
the solution at any iteration. The probability of introducing these states by uniform
sampling is indefinitely limited as the size of the planning problem decreases or the
solution exceeds the hypothetical limit and provides an exact method for specifically
sampling of the ellipsoidal subset. It is also shown that this direct sampling results in

linear convergence to the optimal solution with strict assumptions (i.e., no obstacles).

Solution Cost vs. CPU Time

= RRT*

mmm [formed RRT*

Solution Cost

Figure 4-23: In a random world problem, the solution costs for RRT* and
InformedRRT™* versus computational time [31].

This method of direct sampling enables informed-sampling planners to be devel-
oped. Such a planner, Informed RRT™, is basically introduced to show the benefits of
informed incremental search (Fig.4.22). InformedRRT* functions as RRT™ until a
first solution is found, after which it can only test from the sub-state set specified by
an admissible heuristic to boost the solution. This set implicitly balances exploita-
tion versus exploration and does not require additional standardization (i.e. there
are no additional parameters) or assumptions (i.e. all relevant homotopic categories
are searched). Although heuristics may not always boost the search its importance

in real-world planning shows its practicality. In situations where no additional in-

formation is provided (e.g. where the informed subset includes the entire planning
problem), Informed RRT* is RRT™* equivalent. InformedRRT™* is an improved ver-
sion of RRT™ that shows a clear improvement. When the configuration becomes more
complex, it demonstrates huge improvements in order as shown in F'ig.4.23. The al-
gorithm is less reliant on the dimension and domain of the planning problem as well
as the ability to find improved topologically distinct paths faster as a result of its
focused search. It is also able to find solutions with comparable computation within
tighter tolerances of the optimum than RRT™, and in the absence of obstacles the

optimum solution can be found within system zero in the end time (Fig.4.24).

After an initial solution is found all As the solution is improved the area of In the absence of obstacles the
possible improvements lie within an the ellipse decreases. ellipse degenerates to a line.

I| ellipse. - ..y \ II I-, \ \,.

\ | NN \ Y 53 // v

) e
\A/‘ by r/f\}
- W]
£

Figure 4-24: In the absence of obstacles, the path planned by InformedRRT* from
start state to goal state is a straight line [31].

4.5.1 Informed RRT*

A pseudo algorithm of the informed RRT* is shown in Algs.1 and 2. It is the same
as RRT* with the addition of lines 3, 6, 7, 30, and 31. Informed RRT*, like RRT*,
searches for optimum path in a planning problem, by incrementally expanding a tree
in state space, T = (V, E), which consists of a set of vertices, and edges, towards
randomly selected states, new vertices are being added by growing the graph in the
free space. The graph is reconnected with each other such that the cost of the
neighboring vertices is minimized. Informed RRT* differs from RRT* in a way that,
when the solution is found, it focuses the search on the part that can minimize and

improve the solution. It does it by directly sampling the ellipsoidal heuristic. As can

be seen from line 30, once a solution is found, informed RRT* adds it to the list of
the possible solutions. The algorithm uses, the minimum of this list (line 6 describes

this) to directly sample and estimate X;.

It is convenient to describe the subfunctions introduced in the algorithms.
Sample: Given two states, Tsiart; Tgoal €Xfree and a maximum heuristic value, C,qp €
R, the independent and identically distributed (i.i.d) from the state space, T,e € X,
is being returned from the function Sample(Tsiart, Tgoal, Cimaz), such that the path
between Zsq,+ and x4, that has to go through z,, is less than C),,, as described
in Alg.2. In most planning problems this is computed only once at the start of the
problem.

InGoalRegion: Given a state, x € Xy, the inGoal Region function returns T'rue
or False if the state is in the goal region or not, respectively. Normally, a ball
of radius gy is defined around 7444, hence if the state is in the ball the function
InGoal Region() returns True otherwise False.

RotationToWorldFrame: Given two states, the focal points of hyperellipsoid, T sqrt, Tgoar €
X, the rotation matrix C' € SO(n) is returned by RotationToW orldFrame() func-
tion, from the hyperellipsoid to the world frame as per line 6. This rotation is also
calculated once at the start of the problem.

Nearest Neighbor: Given a graph tree T' = (V| F), a point = € X, the function
Nearest : (T, z) <= v € V which is closest to = in terms of distance, that is
Nearest(T = (V,E),x) := argminv € V||z—v|

Near Vertices: Given a tree T'= (V, E), a point p € X, and a number ¢ such that
q € R > 0, the function Near : (T,p, q) returns a vertex in V' that lies inside a ball
with radius ¢ centered at p, i-e., Near(T,p,q) :={v € V,v € p,q}

Steering: The function Steer(z,y) returns a point z in such a way so that the dis-
tance between y and z is closer than the distance between z and z.

Collision Test: CollisionFree() is a Boolean function that returns True if the

state or the line between [p, ¢] € Xy is free and False otherwise.

Algorithm 1 Informed RRT*(Xtart, Xgoat)

Input:
Output:
LV 4 Zgpare
2: E <+ ¢;
3: Xsoln < ¢7
4: T =(V,E);
5. for iteration = 1...N do
6: Chest < minxsoln € Xsoln{COSt(:Esoln)};
T Trand S Sample(xstartu L goal Cbest);
8: Tnearest < Nearest(T, Trana);
9: Tnew < Steer(Tpearests Trand);

10: if CollisionFree(Tpearests Tnew) then

11: V < Zpew;

12: Xnear < Near(T, Tpew, "RRT*);

13: Tmin € Tnearest;

14: Cmin — CoSt(Tomin) + c.Line(Tpearest, Tnew);
15: for Va,cqr € Xyear do

16: Cnew — Cost(Tpear) + c.Line(Tnear, Tnew);
17: if Chew < Cmin then

18: if CollisionFree(Tpear, Tnew) then
19: Xonin & Xnea'r

20: Cmin < Cnew

21: end if

22: end if

23: end for

24: E + EU{(Xmin, Xnew)}

25: for Va,car € Xpear do

26: Cnear < COSt(Tpear)

27: Cnew — Cost(Tpew) + . Line(Tpear, Tnew);
28: if Chew < Cpear then

29: if CollisionFree(Tpear, Tnew) then
30: Tparent < Parent(Tpeqr)

31: E +— E\ {(zparent, Tnear) }

32: E «— EU{(Tnew, Tnear) };

33: end if

34: end if

35: end for

36: if InGoalRegion(x,e,) then

37 Xsoln <~ Xsoln U Zhew;

38: end if

39: end if

40: end for

41: return T’

Algorithm 2 Sample (Xgart, Xgoar)

Input:
Output:
if ¢,0x < 00 then

1:

2 Cmin < ngoal - Ista'r’t”g;

3 Teenter < (xstart + xgoal)/Q;

4: C' < RotationT oW orld Frame(Zstart + Tgoal);
5: 71 4= Cmaz/2;

6 {Ti}i:z....,n — (Vemas® — cmin®) /25

7 L «+ diag{ri,re,....;tn};

8 Tpan < SampleUnit Ball,

9: Trand < (CLIball + xcenter) N X:

10:

11: else
12: Trana ~ U(X);
13: return Z,q..q;

4.6 Informed RRT* Robot Operating System (ROS)

Implementation

For a long time, autonomous waypoint navigation was an integral part of drone
applications. This approach works well when the drone flies at high altitudes without
obstructions. However, in the case of low altitude flights, it becomes difficult for
drones to navigate independently and require sensors to prevent them from colliding
with the obstacles around them. Situations such as these could be avoided if a
planning algorithm would take advantage of previous observations in the form of a
3D map and use it to guide the Micro-aerial vehicle (MAV) in the collision-free path
to preserve the global navigation waypoint plan. This can be done by creating a
mapping system that would use depth information from stereo cameras or lidars to
create a map of occupancy. In order to navigate autonomously, the planner would
use this map and global plan as input and build control commands for the MAV.

The idea is to continue to generate the environment’s 3D map on the fly and
attempt to reach the goal point by reactively calculating intermediate waypoints to
the final goal, avoiding the obstacles on the map.

The 3D mapping of the environment is explained in the Octomap section of this

receive Octomap_binary

Y

Convert Octree to Collision
object

Apply Informed RRT*

receive goal point receive Odometery

Path exist? r€¢—

RePlanning?

Publish waypoints

Figure 4-25: Flow chart of the Informed RRT* and ROS implementation.

chapter, where Octomap, an octree based data structure was implied. An Octree
encodes the data on the 3D grid in the memory efficiently and allows operations such
as traversing very fast. So the input to this tree is a point cloud and we get a binary
occupancy map representation consisting of information about all the occupied and

unoccupied cells after thresholding the probabilities.

In terms of path planning, we actually take advantage of the Flexible Collision
Check (FCL) [4] and Open Motion Planning Library (OMPL) [7] libraries in im-
plementing InformedRRT™. Initially, Octomap_binary, odometry, & goal_point
topics are subscribed by the planner, searches for a path from start to goal us-
ing OMPL. Meanwhile checks if each node is collision-free through free collision li-

brary (FCL). The optimal path returned by the planner is published on another ROS

topic of trajectory msgs::MultiDOFJointTrajectory type, which in our case is

waypoints . Fig.4.25 shows the flow chart for the implementation of In formed RRT™.

4.7 Autonomous can

The ultimate objective of this thesis

al exploration

is to autonomously navigate the drone over the

canal while knowing the predefined GPS points at 25 meters apart from each other.

Since our observation sensor can percept the environment for 25 meters so we have

set this range as a local goal. F'ig.4.26, shows the flow chart to autonomously explore

the canal, assuming we have fixed GPS points at certain known locations.

Take off

h

ﬂ

h

v
al point

¥

‘ Path pl

anning ‘

h

r

execute frajectory

destin.

is drone reached goal?

= drone reached fina

}7

check if last waypoint is
reached

-]

safe landing

ation?

next

O

)

goal

Figure 4-26: Flow chart of the autonomous canal exploration implementation.

LocalGoals : A 3 x n — dimensional array, that contains the location of fixed
points, 25 meters apart from each other, is supplied to the goal stack. This stack
provides each goal iteratively when the drone reaches a circle centered at the
previous goal with a certain radius rgoq; -

PathPlanning : when the current position of the drone from odometry and local is
supplied to the path planning part, it plans a path between the current position of
the drone and the goal point.

ExecuteTrajectory : The planned path is then provided to the drone controller as
a waypoint. The drone has to follow the path until reaches to the goal point.
IsDroneReachedGoal : After planning a path, the function IsDroneReachedGoal
returns True, if the drone has reached the circle centered at last point of the
waypoint with a radius 7y, otherwise it returns False.
IsDroneReachedFinalDestination: The function

IsDroneReachedFinal Destination returns True if the drone traverses all the goals
in the goal stack, and Flalse if still, goals are to be traversed.

NextGoal : The function NextGoal increment the pointer in the goal stack to be
traversed. If all the goal points are traversed by drone, this function simply returns
None.

Take0ff : The function TakeOf f sets the drone altitude to 4 meters and stay
hovering until an obstacle-free path is planned to follow.

SafeLanding : If the drone traverses all the goal points and has reached the final

destination point, the function SafeLanding enables him to land safely.

Chapter 5

Experimental Results

5.1 Path planning evaluation

To assess the proposed method, we have evaluated the system in certain situations
where it can either succeed or fail. Here, we introduce the word situations, where the
environment, the starting position, and the target are given, the platform should be
able to find a path and allow the drone to travel to the goal position without colliding

with any obstacle.

5.1.1 Situation 1: No obstacles

There are no obstacles to this situation. Going in any direction is not going to lead
to a collision. The purpose of this situation is to see if the path-planning algorithm is
planning a straight path to the goal position. During the experiment, the start and
goal position of the drone was (0, 1, 6) and (23, 1, 6), as Flig.5.1 clearly infers that
the drone follows the straight path as there were no obstacles in the heading of the

drone.

5.1.2 Situation 2: Hanging branches of the Tree

In this situation, the drone has to avoid tree branches hanging in the heading of the

drone. In this case, the drone has two options, to fly over the top of the tree or

63

Figure 5-1: Situation 1, where there is no obstacle In the drone path, and the path-
planning algorithm has to plan a straight path which is the shortest path.

make an attempt finding an obstacle-free window through the branches if any. In this
experiment, a safe window for the drone exists where the drone can safely navigate
through the window and reach the goal position as shown in the Figures.(5.2), (5.3)
& (5.4).

%: / - ‘;,‘l\
2

, when there is hanging tree branches.

Figure 5-3: Planned path (front view).

Figure 5-4: Planned path (side view).

Another similar experiment, where the canal is more denser with tree branches.
The vehicle follows a similar trajectory as in the case of the above one. Fig.5.5 & 5.6

shows the planned path and actual ground truth.

Figure 5-5: Ground truth of situation 2, when there is a more cluttered tree branches
in the path of the drone.

Figure 5-6: Drone path of situation 2.

5.1.3 Situation 3: Bridge Avoidance

In the canal like environment, one among the possible obstacles could be bridges over
the canal. In this situation, an attempt was made to check the behavior of the vehicle
while avoiding collision with a bridge that comes in its heading over the canal. Here,

the vehicle has two possibilities, to cross over the bridge or cross under the bridge.

While experimenting, the algorithm shows both types of behaviors and crosses the
bridge from either of the aspects. Fig.5.7 shows the ground truth and Fig.(5.8) &
(5.9) shows the planned path for this situation.

REY R T
. g |

Figure 5-8: Drones trajectory, passing over the bridge (front view).

5.1.4 Situation 4: Avoidance of a tree trunk that is right

above the canal

Another possible obstacle in a canal-like environment could be a tree trunk that is

tilted towards the canal, as shown in F'ig.5.10. The result of our method in this

Figure 5-9: Drones trajectory, passing over the bridge (side view).

situation is amazing and the vehicle avoided it as can be seen from Fig.(5.11) &
(2.12). These are probably not as much a hard obstacle for the drone as in the case

of situation 2.

Figure 5-10: Ground truth of situation 4, where the drone has to avoid tree trunk
that comes in the path of the drone.

Figure 5-11: Drone trajectory for situation 4 (Front view).

Figure 5-12: Drone trajectory for situation 4 (side view).

5.1.5 Situation 5: Canal completely stuck with obstacles

Unlike situation 1, here the path-planning algorithm has no choice to plan a path for
the drone as the path ahead is completely blocked, however, since we have a complete

map of the past, the drone can navigate back to any position if required.

Chapter 6

Conclusions & Future Work

The main objective of this thesis was to develop a collision-avoidance system for a
Micro-aerial vehicle capable of operating autonomously in a canal-like environment
in simulation. The vehicle is equipped with a stereo camera and a 2D LiDAR for
sensing the environment in front of the vehicle in their respective ranges.

We used the Octomap method [61] to map the 3D canal structure. From the
sensors data, Octomap makes a probabilistic map of the canal environment which
has the ability to deal with sensor noise and a dynamic environment. The drawback
with the use of OctoMap is that, in order to avoid obstacles, only obstacles within
a limited range could be considered as looping through the entire map created is
not computationally feasible. Also, during the execution, Octomap was observed
to consume more processing and memory for long-run drone canal mapping. This
problem can be resolved if voxel downsampling, resolution reduction, and reduction
of the range of the sensor are incorporated.

The obstacle avoidance system is currently unable to detect small objects such as
wires, leaves and thin branches of the tree. In order to overcome these deficiencies, the
disparity image and Octomap could be further improved through suitable parameter
selection.

Informed RRT* [31] shows promising results in almost every test scenario if a
path exists. The algorithm is tested in five different test scenarios, and the planner

effectively provided an optimum path to avoid all obstacles, keeping drones safety

71

distance from obstacles. After having the results of Informed RRT*, we felt that it is
indeed the best planning algorithm for canal mapping application through an aerial
vehicle, it will consume less power and time to complete a mission.

We used the airsim [55] plugin in the Unreal engine [11] to simulate the canal
environment. One can build a near-real simulation environment in the Unreal engine.
In our simulation environment, we include almost every possible obstacle that can
happen in a real-world canal system, and an effort is being made to make it as much
real as it could. To the best of our knowledge, this is the first attempt, a canal
environment is simulated in a realistic way in the Unreal engine.

In this thesis, the localization was assumed to be perfect and we use the ground
truth provided by the simulation engine. To have somehow realistic localization, noise
could be added to the ground truth, and then apply state estimation.

We are finally able, to deliver a Micro-aerial vehicle, that has the capabilities of
mapping the 3D structure of the canal-like environment, avoiding all obstacles, and
planning an obstacle-free path from start to goal position of the canal. We tested our
vehicle for a 2,378m length of canal mapping, as can be seen in the Octomap result

part of this thesis.

Bibliography

Asctec., available: http://www.asctec.de/, October 19 2019.
Autodesk, available: https://www.autodesk.com/, October 19 2019.

Binocular disparity, available: https://en.wikipedia.org/wiki/binocular_disparity,
October 19 2019.

flexible collision library, available: https://github.com/flexible-collision-
library/fcl, October 19 2019.

Hokuyo utm-301x, available: https: //www.hokuyo-
aut.jp/search /single.php?serial=169, October 19 2019.

Mikrocopter, available: http://www.mikrokopter.de/, October 19 2019.

Open motion planning library, available: https://ompl.kavrakilab.org/, October
19 2019.

Parrot, available: https://www.parrot.com/us/, October 19 2019.

Ros stereo image proc, available: http://wiki.ros.org/stereo_image_proc, October
19 2019.

Ros wiki, available: http://wiki.ros.org/, October 19 2019.
Unreal engine 4, available: https://www.unrealengine.com, October 19 2019.

V-rep physics engine, available: http://www.coppeliarobotics.com/, October 19
2019.

Zed explorer, available: https://www.stereolabs.com/docs/getting-
started /installation/, October 19 2019.

Markus Achtelik, Abraham Bachrach, Ruijie He, Samuel Prentice, and Nicholas
Roy. Autonomous navigation and exploration of a quadrotor helicopter in gps-
denied indoor environments, 2009.

Zahoor Ahmad, Rubab Khalid, and Abubakr Muhammad. Spatially distributed
water quality monitoring using floating sensors. In IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, Washington, DC, USA,
October 21-23, 2018, pages 2833—-2838, 2018.

73

[16]

[17]

[18]

[20]

[21]

[22]

Franz Andert, Florian-M. Adolf, Lukas Goormann, and Jorg S. Dittrich. Au-
tonomous vision-based helicopter flights through obstacle gates. Journal of In-
telligent and Robotic Systems, 57(1):259, Aug 2009.

Umit Atila, Ismail Karas, and Alias Rahman. A 3d-gis implementation for real-
izing 3d network analysis and routing simulation for evacuation purpose. Lecture
Notes in Geoinformation and Cartography, pages 249-260, 10 2013.

Marcelo Becker, Rafael Sampaio, Samir Bouabdallah, Vincent Perrot, and
Roland Siegwart. In-flight collision avoidance controller based only on os4 em-
bedded sensors. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 34:294-307, 09 2012.

M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav navi-
gation in unknown and unstructured environments. In 2010 IEEE International
Conference on Robotics and Automation, pages 21-28, May 2010.

Samir Bouabdallah. Design and control of quadrotors with application to au-
tonomous flying. 01 2007.

Samir Bouabdallah, Marcelo Becker, Vincent de Perrot, and Roland Siegwart.
Toward obstacle avoidance on quadrotors. 2007.

J. Carsten, D. Ferguson, and A. Stentz. 3d field d: Improved path planning and
replanning in three dimensions. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3381-3386, Oct 2006.

K. Celik, S. Chung, M. Clausman, and A. K. Somani. Monocular vision slam for
indoor aerial vehicles. In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1566—1573, Oct 2009.

D. M. Cole and P. M. Newman. Using laser range data for 3d slam in outdoor
environments. In Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., pages 1556-1563, May 2006.

Luca De Filippis, Giorgio Guglieri, and Fulvia Quagliotti. Path planning strate-
gies for uavs in 3d environments. Journal of Intelligent € Robotic Systems,
65(1):247-264, Jan 2012.

Jakob Engel, Jurgen Sturm, and Daniel Cremers. Camera-based navigation of a
low-cost quadrocopter. pages 2815-2821, 10 2012.

Jakob Engel, Jiirgen Sturm, and Daniel Cremers. Accurate figure flying with a
quadrocopter using onboard visual and inertial sensing. IMU, 320, 01 2012.

Nathaniel Fairfield, George Kantor, and David Wettergreen. Real-time slam with
octree evidence grids for exploration in underwater tunnels. J. Field Robotics,
24:03-21, 02 2007.

[29]

[30]

[31]

[33]

[34]

[35]

[36]

David Ferguson and Anthony (Tony) Stentz. Anytime rrts. In Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS °06), pages 5369 — 5375, October 2006.

A. S. Gadre, S. Du, and D. J. Stilwell. A topological map based approach to
long range operation of an unmanned surface vehicle. In 2012 American Control
Conference (ACC), pages 5401-5407, June 2012.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2997-3004, Sep. 2014.

S. Grzonka, G. Grisetti, and W. Burgard. Towards a navigation system for
autonomous indoor flying. In 2009 IEEE International Conference on Robotics
and Automation, pages 28782883, May 2009.

Slawomir Grzonka. Mapping, state estimation, and navigation for quadrotors
and human-worn sensor systems. PhD thesis, 01 2011.

Slawomir Grzonka, Giorgio Grisetti, and Wolfram Burgard. A fully autonomous
indoor quadrotor. IEEE Transactions on Robotics, 28:90-100, 02 2012.

Jens-Steffen Gutmann, Masaki Fukuchi, and Masahiro Fujita. 3d perception and
environment map generation for humanoid robot navigation. The International
Journal of Robotics Research, 27(10):1117-1134, 2008.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction to ”a formal ba-
sis for the heuristic determination of minimum cost paths”. SIGART Newsletter,

37:28-29, 1972.

M. Herbert, C. Caillas, Eric Krotkov, I.S. Kweon, and Takeo Kanade. Terrain
mapping for a roving planetary explorer. pages 997 — 1002 vol.2, 06 1989.

Stefan Hrabar and Gaurav Sukhatme. Vision-based navigation through urban
canyons. J. Field Robotics, 26:431-452, 05 2009.

David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Random-
ized kinodynamic motion planning with moving obstacles. The International
Journal of Robotics Research, 21(3):233-255, 2002.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846—
894, 2011.

L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IFEFE
Transactions on Robotics and Automation, 12(4):566-580, Aug 1996.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[54]

[55]

OMAR KHALFAOQOUI. Development of an industrial robotic cell simulation en-
vironment for safe human robot interaction purposes. 10 2014.

Steven M. LaValle and Jr. James J. Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378-400, 2001.

Hans Moravec. Robot spatial perception by stereoscopic vision and 3d evidence
grids,” robotics institute. 04 2011.

Andreas Nuchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann.
6d slam - 3d mapping outdoor environments. Fraunhofer IAIS, 24, 11 2006.

Satyarth Praveen. Efficient Depth FEstimation Using Sparse Stereo-Vision with
Other Perception Techniques. 05 2019.

Asad Qureshi. Managing salinity in the indus basin of pakistan. International
Journal of River Basin Management, Vol. 7, No. 2 (2009), pp. 111-117, 06 20009.

S. Rathinam, P. Almeida, Z. Kim, S. Jackson, A. Tinka, W. Grossman, and
R. Sengupta. Autonomous searching and tracking of a river using an uav. In
2007 American Control Conference, pages 359-364, July 2007.

Joern Rehder, Kamal Gupta, Stephen T. Nuske, and Sanjiv Singh. Global pose
estimation with limited gps and long range visual odometry. In Proceedings of
IEEE Conference on Robotics and Automation, May 2012.

James Roberts, Timothy Stirling, Jean-Christophe Zufferey, and Dario Floreano.
Quadrotor using minimal sensing for autonomous indoor flight. 01 2007.

Y. Roth-Tabak and R. Jain. Building an environment model using depth infor-
mation. Computer, 22(6):85-90, June 1989.

Sebastian Scherer, Joern Rehder, Supreeth Achar, Hugh Cover, Andrew D.
Chambers, Stephen T. Nuske, and Sanjiv Singh. River mapping from a fly-

ing robot: state estimation, river detection, and obstacle mapping. Autonomous
Robots, 32(5):189 — 214, May 2012.

Sebastian Scherer, Sanjiv Singh, Lyle Chamberlain, and Mike Elgersma. Flying
fast and low among obstacles: Methodology and experiments. The International
Journal of Robotics Research, 27(5):549-574, 2008.

Flemming Scholer, Anders la Cour-Harbo, and Morten Bisgaard. Configuration
space and visibility graph generation from geometric workspaces for uavs. 08
2011.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-
fidelity visual and physical simulation for autonomous vehicles. In Field and
Service Robotics, 2017.

[56]

[62]

[63]

[64]

[65]

[66]

[67]

S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor indoor navigation
with a computationally constrained mav. In 2011 IEEFE International Conference
on Robotics and Automation, pages 20-25, May 2011.

R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor
terrain mapping and loop closing. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2276-2282, Oct 2006.

C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth. In
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CHS37453), volume 2, pages 1178-1183 vol.2,
Oct 2003.

Andrew Viquerat, Lachlan Blackhall, Alistair Reid, Salah Sukkarieh, and Gra-
ham Brooker. Reactive Collision Avoidance for Unmanned Aerial Vehicles Using
Doppler Radar, pages 245-254. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Monocular-slam-
based navigation for autonomous micro helicopters in gps-denied environments.
J. Field Robotics, 28:854-874, 11 2011.

Kai M. Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. Octomap : A probabilistic , flexible , and compact 3 d map
representation for robotic systems. 2010.

Fei Yan, Yi-Sha Liu, and Ji-Zhong Xiao. Path planning in complex 3d environ-
ments using a probabilistic roadmap method. International Journal of Automa-
tion and Computing, 10(6):525-533, Dec 2013.

Junho Yang, Dushyant Rao, Soon-Jo Chung, and Seth Hutchinson. Monocular
vision based navigation in gps-denied riverine environments. AIAA Infotech at
Aerospace Conference and FExhibit 2011, 03 2011.

K. Yang and S. Sukkarieh. Real-time continuous curvature path planning of uavs
in cluttered environments. In 2008 5th International Symposium on Mechatronics
and Its Applications, pages 1-6, May 2008.

Liang Yang, Juntong Qi, Jizhong Xiao, and Xia Yong. A literature review of uav
3d path planning. Proceedings of the World Congress on Intelligent Control and
Automation (WCICA), 2015:2376-2381, 03 2015.

Manuel Yguel, Christopher Keat, Christophe Braillon, Christian Laugier, and
Olivier Aycard. Dense mapping for range sensors: Efficient algorithms and sparse
representations. 06 2007.

Yuan Zhang. Localization and 2d mapping using low-cost lidar. 2018.

10

11

12

13

14

15

16

17

18

Appendix A

Airsim Codes

A.1 Acquiring Left, Right images and Vehicle Pose
from Unreal-Airsim to ROS

#!/usr/bin/env python

import setup-path

import airsim

import numpy as np

import rospy

from sensor_.msgs.msg import Image,Cameralnfo
from tf2_msgs.msg import TFMessage

from geometry-msgs.msg import TransformStamped
from geometry msgs.msg import PoseStamped

from math import pi

from cv_bridge import CvBridge

import cv2

CAMERA_FX = 224.066931372
CAMERA_FY = 224.066931372
CAMERA_CX = 320

CAMERA_CY

240

79

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Tx = —0.50 » CAMERA_FX

CAMERA_K1 = —0.000591
CAMERA_K2 = 0.000519

CAMERA_P1

0.000001

CAMERA_P2 —0.000030

CAMERA_P3 = 0.0

IMAGE_-WIDTH = 640 # resolution should match values in settings.json

IMAGE_HEIGHT = 480

class stereoPublisher:
def __init__(self):

self.bridge_rgb = CvBridge ()
self.msg_.rgb_right = Image/()
self.msg_-rgb_left = Image ()
self.msg_.info_.right = CameralInfo ()
self.msg.info_left = CameralInfo()
self.msg_.tf = TFMessage ()
self.sim_pose_.msg = PoseStamped/ ()

self.odom.msg = Odometry ()

def getRGBImageRight (self, response_rgb) :

imgld = np.fromstring(response_rgb.image_data_-uint8,

dtype=np.uint8)

img.rgb_right = imgld.reshape (response_rgb.height,

response_rgb.width, 3)

img_.rgb_right = img_.rgb_right[..., :3][...

return img.rgb_right

def getRGBImagelLeft (self, response_rgb) :

img2d = np.fromstring(response_rgb.image_data_-uint38,

dtype=np.uint8)

img_.rgb_left = img2d.reshape (response_rgb.height,

response_rgb.width, 3)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

img_rgb_.left = img.rgb_left[..., ::3][..., ::=1]

return img_rgb_left

def GetCurrentTime (self):

self.ros_time = rospy.Time.now ()

def CreateRGBMessageRight (self, img_rgb_right) :

self.msg_rgb_right.header.stamp = self.ros_time
self.msg_rgb_right.header.frame_id = "/rightCam_link"
self.msg.rgb_right.encoding = "bgr8"

self.msg_rgb_right.height = IMAGE_HEIGHT
self.msg.rgb_right.width = IMAGE_ WIDTH
self.msg.rgb_right.data =

self.bridge_rgb.cv2_to_imgmsg (img_-rgb_right, "bgr8")
self.msg.rgb_right.is_bigendian = 0
self.msg.rgb_right.step = self.msg.rgb_right.width * 3

return self.msg.rgb_right

def CreateRGBMessageleft (self, img_.rgb_left):

self.msg_.rgb_left.header.stamp = self.ros_time
self.msg.rgb_left.header.frame_id = "/leftCam_link"
self.msg.rgb_left.encoding = "bgr8"

self.msg.rgb_left.height = IMAGE_HEIGHT
self.msg.rgb_left.width = IMAGE_WIDTH

self.msg_rgb_left.data =

.data

self.bridge_rgb.cv2_to_imgmsg (img_rgb_left, "bgr8").data

self.msg.rgb_left.is bigendian = 0
self.msg.rgb_left.step = self.msg.rgb_left.width » 3

return self.msg.rgb_left

def CreateInfoMessageRight (self): #Right camera camera_info
self.msg_.info_right.header.frame_id = "/rightCam_link"
self.msg_info_right.height = self.msg.rgb_right.height
self.msg_info_right.width = self.msg_.rgb_right.width

self.msg.info_-right.distortion.model = "plumb_bob"

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

self.
self.
self.
self.

self.

self

self.
self.
self.
self.
self.
self.
self.

self.

self.

self

self.
self.
self.
self.
self.
self.
self.

self.

self
self

self.
self.
self.
self.
self.
self.
self.

msg-info_right.
msg-info_right.
msg-info_right.
msg_info_right.

msg-info_right.

.msg_info_right

msg-info_right
msg-info_right
msg-info_right
msg_-info_right
msg-info_right
msg-info_right

msg_-info_right

msg-info_right.

msg-info_right

.msg_info_right

msg-info_right
msg-info_right
msg_-info_right
msg-info_right
msg-info_right
msg_-info_right

msg_-info_right

msg-info_right

.msg_-info_right

.msg_info_right

msg-info_right
msg_-info_right
msg_-info_right
msg-info_right
msg-info_right

msg-info_right

msg_-info_right.

D.append (CAMERA_K1)
D.append (CAMERA _K2)
D.append (CAMERA_P1)
D.append (CAMERA_P2)
D.append (CAMERA_P3)
.K[0] = CAMERA_FX
K[1] =0

.K[2] = CAMERA_CX
.K[3] =0

.K[4] = CAMERA_FY
.K[5] = CAMERA_CY
.K[6] =0

K[7] =0

K[8] =1

.R[0] = -1

.R[1] =0

.R[2] =0

.R[3] =0

.R[4] = -1

.R[5] =0

.R[6] =0

.R[7] =0

.R[8] = -1

.P[0] = CAMERA_FX
.P[1] =0

.P[2] = CAMERA_CX
.P[3] = Tx

.P[4] =0

.P[5] = CAMERA_FY
.P[6] = CAMERA_CY
.P[7] =0

.P[8] =0

P[9] = O

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

self.msg_.info_.right.P[10]

Il
-

self.msg_info_right.P[11] = O

self.msg_info_.right.binning.x =

self.msg_info_right.binning.y = 0

self.msg_.info_.right.roi.x offset =

self.msg_.info_.right.roi.y_offset =

self.msg_info_.right.roi.height =

self.msg_info_.right.roi.width = 0

self.msg_info_.right.roi.do_rectify = False

self.msg_.info_right.header.stamp =

self.msg_rgb_right.header.stamp

return self.msg.info_right

def CreateInfoMessageleft (self): #left camera camera_info
self.msg_info_left.header.frame_id = "/leftCam_link"
self.msg_info_left.height = self.msg_rgb_left.height

self.

self.

self.
self.
self.
self.
self.

self.
self.
self.
self.
self.
self.
self.
self.

self.

msg_-info_left.

msg-info_left.

msg_-info_left.
msg-info_left.
msg-info_left.
msg_info_left.

msg_-info_left.

msg-info_left.
msg-info_left.
msg_info_left.
msg-info_left.
msg_-info_left.
msg_-info_left.
msg-info_left.
msg-info_left.

msg-info_left.

width = self.msg_.rgb_left.width

distortion.model = "plumb_bob"

.append (CAMERA_K1)
.append (CAMERA_K2)
.append (CAMERA_P1)

.append (CAMERA_P2)

o o U U o

.append (CAMERA_P3)

K[0] = CAMERA_FX
K[1l] =0
K[2] = CAMERA_CX
K[3] =0
K[4] = CAMERA_FY
K[5] = CAMERA_CY
K[6e] =0
K[7] =0
K[8] =1

152 self.msg_info_left.R[0] =1

153 self.msg_info_left.R[1] = 0

154 self.msg_info_left.R[2] = 0

155 self.msg_info_left.R[3] = 0

156 self.msg_info_left.R[4] =1

157 self.msg_info_left .R[5] = 0

158 self.msg_info_left.R[6] = 0

159 self.msg_info_left.R[7] = 0

160 self.msg_info_left.R[8] =1

161

162 self.msg_.info_left.P[0] = CAMERA_FX

163 self.msg_info_left.P[1] = 0

164 self.msg_info_left.P[2] = CAMERA_CX

165 self.msg_info_left.P[3] = 0

166 self.msg_info_left.P[4] = 0

167 self.msg_info_left.P[5] = CAMERA_FY

168 self.msg_info_left.P[6] = CAMERA_CY

169 self.msg_info_left.P[7] = 0

170 self.msg_info_left.P[8] = 0

171 self.msg_info_left.P[9] = 0

172 self.msg_info_left.P[10] =1

173 self.msg_info_left.P[11] = O

174

175 self.msg.info_left.binning.x = self.msg.info_left.binning.y
=0

176 self.msg_.info_left.roi.x_offset =

self.msg_.info_left.roi.y_offset =
self.msg_-info_left.roi.height =

self.msg_info_left.roi.width = 0

177 self.msg_.info_left.roi.do.rectify = False

178 self.msg_info_left.header.stamp = self.msg.rgb_left.header.stamp
179 return self.msg_info_left

180

181 def CreateTFMessage (self):

182 self.msg_tf.transforms.append(TransformStamped())

183 self.msg_tf.transforms[0] .header.stamp = self.ros_time

184

185

186

187

188

190

191

192

193

194

197

198

199

200

201

202

203

204

205

207

208

209

210

211

self.msg_tf.transforms[0] .header.frame_id = "/world"

self.msg_tf.transforms[0].child_frame_id = "/base_link"

self.msg.tf.transforms[0].transform.

sim_pose_msg.pose.position.x

self.msg tf.transforms[0].transform.

sim pose_msg.pose.position.y

self.msg_tf.transforms[0] .transform.

sim_pose_msg.pose.position.z

self.msg tf.transforms[0].transform.

sim_pose_msg.pose.orientation.x

self.msg_tf.transforms[0] .transform.

sim_ pose_msg.pose.orientation.y

self.msg tf.transforms[0].transform.

sim_pose_msg.pose.orientation.z

self.msg_tf.transforms[0] .transform.

sim pose_msg.pose.orientation.w

translation.x =

translation.y =

translation.z

rotation.x =

rotation.y =

rotation.z =

rotation.w =

self.msg_tf.transforms.append (TransformStamped())

self.msg.tf.transforms[1l].header.stamp = self.ros_time
self.msg_tf.transforms[1] .header.frame_id = "/base_link"
self.msg.tf.transforms([1l].child_.frame_id = "/stereo_link"
self.msg.tf.transforms[1l].transform.translation.x = 0.46
self.msg_tf.transforms[1l].transform.translation.y = 0.0
self.msg_tf.transforms[1l].transform.translation.z = 0.0
gs = airsim.to_quaternion (0,0,0)
self.msg.tf.transforms[1l].transform.rotation.x = gs.x_val

self.msg_tf.transforms[1l].transform.

self.msg_-tf.transforms[1l].transform

self.msg_tf.transforms[1l].transform

q = airsim.to_quaternion(0,pi/2,0)

rotation.y = gs.y.val

.rotation.z = gs.z_.val

.rotation.w = gs.w._val

self.msg_tf.transforms.append (TransformStamped())

self.msg.tf.transforms[2] .header.stamp = self.ros_time

self.msg_tf.transforms[2] .header.frame_id = "/stereo_link"

self.msg.tf.transforms[2] .child_ frame_id =

"/leftCam_optical_link"

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

240

241

242

243

244

245

self.msg_tf.
self.msg_tf.
self.msg_tf.
self.msg_tf.
self.msg_tf.
self.msqg_tf.

self.msg_tf.

self.msg_tf.
self.msg_tf.

self.msg_tf.

self.msg_tf

transforms [2]
transforms[2]
transforms[2]
transforms[2]
transforms[2]

transforms[2]

transforms([2].

.transform.
.transform.
.transform.
.transform.
.transform.

.transform.

transform.

transforms[3] .header.stamp =

transforms([3] .header.frame_id =

translation.x
translation.y
translation.z
rotation.x =
rotation.y =
rotation.z =

rotation.w =

transforms.append (TransformStamped())

"/ste

.transforms[3] .child_frame_id =

"/rightCam optical_link"

self.msg_tf
self.msg_tf
self.msg_tf
self.msg_tf
self.msg_tf
self.msg_tf

self.msg_tf

qo =

.transforms[3]
.transforms[3]
.transforms[3]

.transforms [3]

.transforms[3].

.transforms[3]

.transforms [3]

.transform.
.transform.
.transform.

.transform.

transform

.transform.

.transform.

airsim.to_quaternion (pi/2,0,0)

.rotation.y

translation.x
translation.y
translation.z

rotation.x =

rotation.z

rotation.w

self.msg_tf.transforms.append (TransformStamped())

self.msg_tf.transforms[4] .header.stamp =

self.msg.tf.transforms[4] .header.frame_id =

"/leftCam_optical_link"

self.msg_tf

self.msg_tf.
self.msg_tf.
self.msg_tf.
self.msqg_tf.
self.msg_tf.
self.msg_tf.

self.msg_tf.

self.msg_tf.

.transforms[4]

transforms[4]
transforms[4]
transforms[4]
transforms [4]

transforms[4]

transforms[4].

transforms([4].

.child_frame_id =

transform.

transform

.transform.
.transform.
.transform.
.transform.

.transform.

"/left

translation.x

.translation.y

translation.z

rotation.x

rotation.y =

rotation.z

rotation.w =

transforms.append (TransformStamped())

= 0.0
g.x-val
g.y-val
g.z-val

g.w-val

self.ros_time

reo_link"

= 0.0
= 0.25

0.0
.x_val
.y-val

.z_val

Q Qe Q9 Q9

.w_val

self.ros_time

Cam_link"
= 0.0
= 0.0
= 0.0
go.x_val
go.y-val
go.z-val

go.w_val

246 self.msg.tf.transforms[5] .header.stamp = self.ros_time
247 self.msg_tf.transforms[5] .header.frame_id =

"/rightCam_optical_-1link"

248 self.msg_tf.transforms[5].child_.frame_id = "/rightCam_link"
249 self.msg_tf.transforms[5].transform.translation.x = 0.0
250 self.msg_tf.transforms[5].transform.translation.y = 0.0
251 self.msg_tf.transforms[5] .transform.translation.z = 0.0
252 self.msg.tf.transforms[5].transform.rotation.x = go.x_val
253 self.msg_tf.transforms[5].transform.rotation.y = go.y.-val
254 self.msg.tf.transforms[5].transform.rotation.z = go.z_-val
255 self.msg_tf.transforms[5] .transform.rotation.w = go.w_val
256

257 return self.msg._tf

258

259 def get_sim_pose (self):

260 # get state of the multirotor

261 drone_state = client.simGetGroundTruthKinematics ()

262 pos_ned = drone_state.position

263 orientation_.ned = drone_state.orientation

264 pos_enu = airsim.Vector3r (pos_ned.x_val,

265 —pos_-ned.y-val,

266 — pos_ned.z_val+9)

267 orientation_enu = airsim.Quaternionr (orientation_ned.w_val,
268 — orientation_ned.z_val,

269 — orientation_ned.x_val,

270 orientation_ned.y_val)

271 # populate PoseStamped ros message

272 sim_pose_msg = PoseStamped ()

273 sim_pose.msg.pose.position.x = pos_enu.x_val

274 sim_pose_msg.pose.position.y = pos_enu.y._val

275 sim pose.msg.pose.position.z = pos_enu.z_val

276 sim_pose_msg.pose.orientation.w = orientation_enu.w_val
277 sim_pose_msg.pose.orientation.x = orientation_enu.x_val
278 sim pose_msg.pose.orientation.y = orientation_enu.y._val
279 sim_pose_msg.pose.orientation.z = orientation_enu.z_val

280 sim_pose_msg.header.seq = 1

281 sim_pose_msg.header.frame_id = "world"

282 return sim_pose_msg

283

284 1f __name__ == "__main__":

285 client = airsim.MultirotorClient ()

286 client.confirmConnection ()

287 client.enableApiControl (True)

288 client.armDisarm(True)

289

290 rospy.init_node('airsim.publisher', anonymous=True)
291 publisher_rgb_right =

rospy.Publisher ('/raw_ stereo/right/image_raw', Image,
queue_size=10)

292 publisher_rgb_left =
rospy.Publisher ('/raw_stereo/left/image_raw', Image,
queue_size=10)

293 publisher_info_right =
rospy.Publisher ('/raw_stereo/right/camera_info', Cameralnfo,
queue_size=10)

294 publisher_info_left =
rospy.Publisher ('/raw_stereo/left/camera_info', Cameralnfo,

queue_size=10)

295 publisher_tf = rospy.Publisher('/tf', TFMessage, queue_size=10)

296 pose_pub = rospy.Publisher ("airsim/pose", PoseStamped, queue_size=1)
207 rate = rospy.Rate(30) # 30hz

298 pub = stereoPublisher ()

299

300 while not rospy.is_shutdown () :

301 sim_pose_.msg = pub.get_sim_pose ()

302 responses = client.simGetImages ([airsim.ImageRequest ("1",

airsim.ImageType.Scene, False, False),
303 airsim.ImageRequest ("2",
airsim.ImageType.Scene,
False, False)])
304 img_.rgb_right = pub.getRGBImageRight (responses|[0])

305 img_-rgb_left = pub.getRGBImageleft (responses[1l])

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

326

327

328

A.2

pub.GetCurrentTime ()
msg-rgb_right = pub.CreateRGBMessageRight (img_-rgb_right)

msg_rgb_left = pub.CreateRGBMessageleft (img_.rgb_left)

msg_info_right = pub.CreateInfoMessageRight ()

msg-info_left = pub.CreateInfoMessagelLeft ()
msg_tf = pub.CreateTFMessage ()
publisher_rgb_right.publish (msg_rgb_right)
publisher_rgb_left.publish (msg_.rgb_left)
publisher_info_right.publish (msg_info_right)

publisher_info_left.publish(msg_-info_left)

publisher tf.publish (msg_tf)

pose_pub.publish(sim_pose_msqg)
del pub.msg_info_right.D[:]
del pub.msg_info_left.D[:]

del pub.msg_-tf.transforms|[:]

rate.sleep()

Acquiring LiDAR data from Airsim to ROS

#!/usr/bin/env python

import
import
import
import

import

setup-path
airsim
pprint
rospy

tf

from std.msgs.msg import String

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

from sensor_.msgs.msg import PointCloud

from sensor_msgs.msg import PointCloud2, PointField

from geometry.msgs.msg import Vector3, Point32

import numpy

import time

def lidarpcpub() :

pub_front = rospy.Publisher ("/ust_scan", PointCloud, queue_size=10)

rospy.init_node ('lidarpcpub’,

rate = rospy.Rate(200)

connect to the AirSim simulator

anonymous=True)

client = airsim.MultirotorClient ()

client.confirmConnection ()
simLidar = PointCloud()
simLidar2 = PointCloud()

vec = Vector3()

while not rospy.is_shutdown () :

lidarData2 =

client.getlLidarData (lidar_-name="FrontLidarSensor",

vehicle_name= "Dronel")

if (len(lidarData2.point_cloud)< 3):

print ("\tNo points received from Front Lidar Data")

else:
points2 = numpy.array(lidarData2.point_cloud,
dtype=numpy.dtype ('f4"))
points2 = numpy.reshape (points2,

(int (points2.shape[0]1/3), 3))

#print ("\tReading %d: time_stamp: %d

number_of_points:

Fd" 5 (1,

lidarData.time_stamp, len (points)))

#rospy.loginfo(lidarData2.point_cloud)

simLidar2.header.stamp

rospy.Time.now ()

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

simLidar?2.header.frame_id = "leftCam_link"

simLidar2.points = []

for m in range (points2.shape[0]) :

simLidar2.points.append (Point32 (points2[m] [0],points2[m] [1],points2[m] [

pub_front.publish (simLidar?2)

rate.sleep()

main
if __name__ == '__main__"':
try:

lidarpcpub ()
except rospy.ROSInterruptException:

pass

	Contents
	Introduction
	Motivation
	Problem Statement
	Related Work
	Related Work on Obstacle Avoidance
	Related Work on Path Planning
	Related Work on Mapping

	Sensors
	Stereo Camera
	Stereo Camera Model
	Stereo Disparity Computation
	Stereo Block Matching
	ZED Stereo Camera

	Light Detection and Ranging (LiDAR)
	Hokuyo UTM-30LX LiDAR

	Stereo vs LiDAR Comparison

	Simulation Environment
	V-REP Simulation Platform
	Simulation Environment Build in V-REP

	Unreal Engine
	Simulation Environment Build in Unreal engine

	Microsoft Airsim Plugin
	Airsim Multirotor

	Comparison between Unreal engine and V-REP

	Methodology
	System Architecture
	Getting Left and Right Image from Stereo camera
	Airsim LiDAR data to ROS
	Stereo Disparity and Point Cloud construction

	Sensor data fusion via Concatenation
	OctoMap mapping framework
	Probabilistic sensor fusion

	Octomap Robot Operating System (ROS) Implementation
	Octomap Outputs Using V-REP Physics engine
	Octomap Outputs Using Unreal engine

	Path Planning
	Informed RRT*

	Informed RRT* Robot Operating System (ROS) Implementation
	Autonomous canal exploration

	Experimental Results
	Path planning evaluation
	Situation 1: No obstacles
	Situation 2: Hanging branches of the Tree
	Situation 3: Bridge Avoidance
	Situation 4: Avoidance of a tree trunk that is right above the canal
	Situation 5: Canal completely stuck with obstacles

	Conclusions & Future Work
	Airsim Codes
	Acquiring Left, Right images and Vehicle Pose from Unreal-Airsim to ROS
	Acquiring LiDAR data from Airsim to ROS

