
Autonomous Navigation and Mapping of Snake
Robots for Urban Search and Rescue

Syed Izzat Ullah
Department of Computing Sciences

Texas A&M University-Corpus Christi
Texas, USA

sizzatullah@islander.tamucc.edu

Tallat Mahmood
Control, Automotive and Robotics Lab

NCRA, Rawalpindi, Pakistan
tallatmahmood98@gmail.com

Anayatullah
Control, Automotive and Robotics Lab

NCRA, Rawalpindi, Pakistan
anayat.ullah@buitms.edu.pk

Abstract—In an Urban Search and Rescue (USAR) situation,
under extreme time pressure, rescue workers have to locate and
extract the trapped people in collapsed structures. Due to the
lack of medical treatment, food, and water, the victim’s mortality
rate dramatically increases over time. Rescue operations for both
rescue workers and victims might be as dangerous as the initial
event. For such situations, snake robots which are inspired by
their biological counterparts, are shown to be a good option in the
literature, to help the rescue workers in positioning the victims
or delivering life-saving drugs to extend the life of the victims
for some time. However, current research mainly focuses on
mechanical design, control mechanisms, and gait generation. To
alleviate this concern, we have integrated state-of-the-art methods
to develop an autonomous snake robot that can navigate in an
unknown environment while also generating a 3D map, to provide
a better idea of the environment to the rescue workers. A sim-
ulated maze environment is implemented and demonstrated by
using the CoppeliaSim simulation, running on Robot Operation
System (ROS) and Linux OS. The simulation result shows the
effectiveness of the proposed autonomous navigation system for
the snake robot to plan an obstacle-free path from the robot’s
current position to the goal position without an apriori knowledge
of the environment.

Index Terms—Snake robot, navigation, Mapping, Path Plan-
ning, ROS, CoppeliaSim, USAR, RRT*

I. INTRODUCTION

In an urban search and rescue (USAR) operation, the focus
of the rescuers is to locate and extract the trapped people
in collapsed or damaged structures. Owing to the exposure
and absence of medical treatment, water, and food; the victim
mortality rate dramatically increases after 48 hours [1]. For
both rescuers and victims, rescue operation might be as
dangerous as the initial event. Moving through the collapsed
structure or enlarging entry points for people and rescuing
equipment may cause further collapse, endangering the lives
of trapped survivors or rescuers. Besides that, the possibility
of gas leakage and explosions can also increase the threat of
survivors’ mortality. In this situation, a rescue dog can aid in
exploring smaller void spaces that a human cannot, but they
cannot substitute professional structural assessment equipment
or a camera system that provides live situations to the rescue

Syed Izzat Ullah was with the Control, Automotive and Robotics Lab
(CARL), National Centre of Robotics and Automation, Rawalpindi, Pakistan.
He is now pursuing a Ph.D. in the Department of Computing Sciences at
Texas A&M University-Corpus Christi, TX, USA

workers. A small lightweight robot with perceptional and nav-
igational capabilities to explore the area can be a good option
for an urban search and rescue operation while significantly
limiting the danger to both humans and dogs. For example,
the robot could

• Localize the survivor’s limbs to prevent rescue workers
from damaging them during extraction,

• Place specific sensors into the rubble to accurately posi-
tion the survivor,

• evaluate the structural damage by collecting visual and
seismic data,

• deliver communication devices or a small amount of food
and lifesaving drugs to the survivor, and

• help guide the use of jaws-of-life and other rescuing tools.

Towards that end, studies have been conducted on the
research and development of various mobile robots for USAR
with different levels of capabilities. These include, for in-
stance, an aerial vehicle, tracked robots, bipedal robots, and
modular re-configurable robots. Despite having much wider
terrain adaptability than wheeled robots, these robots still
cannot fit all types of terrain. The exceptional mobility of
snakes in a variety of environments, including desert, water,
rocky mountains, and trees, has compelled researchers to
develop snake robots that move and looks like biological
snake and exhibits locomotion without requiring wheels or
legs [2]. Snake robots are well suited in this case to help the
rescue workers speed up the recovery of trapped survivors.
The application of snake robots is not only restricted to USAR
but they are also a suitable option for operating in numerous
applications such as surveillance, firefighting, inspecting pipes,
and hazardous tasks in industrial and nuclear plants where
human operations are not preferred. To alleviate this concern,
high intelligence of the snake robots is apparently required,
which proposes autonomous control techniques and task adap-
tive path following strategy. Tanaka et al. [3] have shown a
semi-autonomous snake robot with passive wheels that can
avoid collisions with obstacles. They have used a 2D LiDAR
and a camera mounted on the head of the robot for SLAM and
frontal obstacle avoidance, while ultrasonic sensors at the sides
are used for lateral collision avoidance. However, 2D LiDAR
and passive wheels restrict the robot to navigate on a planner



surface only. Furthermore, the use of multiple sensors will
increase computational complexity and reduce the operation
time due to excessive power consumption. Similarly, Li et al.
[4] has used an overhead camera mounted on the top of a
custom-built arena for localization and a front-facing camera
on the robot head for collision avoidance. Sartoretti et al. [5]
have proposed a combined velocity and heading control-based
navigation strategy in simulation for a cluttered environment
where instead of avoiding the obstacles, it has to be exploited
to support and direct the motion of the snake robot. Yang at el.
[6] has investigated a perception-aware path-finding strategy
where a 2D LiDAR is used to model the obstacle map and
then a modified RRT is used as a path planner to find a
feasible path to the goal position. Machine learning-based
approaches, including a deep convolutional neural network
coupled with reinforcement learning, are also being used in
contemporary techniques for snake robot navigation [7] [8].
These approaches tend to tackle the object tracking and control
pipeline in an end-to-end manner, based on reinforcement
learning.

Our work is more inspired by a real USAR scenario where
the robot has to explore the environment for victims and as
well as generate a 3D map to reel back once the victim is
identified. We have used only a single stereo camera as the
only perception sensor for both mapping and obstacle avoid-
ance. In detail, our framework consists of three implementation
procedures. First, the stereo camera is utilized to perceive the
environment around the robot. Then, we iteratively create a
local map from the stereo point cloud using the octomap [9]
package of the ROS, by which an Informed RRT* [10] is used
to find a feasible path from the robot’s current position to the
goal position. Finally, to navigate over the path, we have devel-
oped a path following strategy as explained in section III-A5,
to navigate the snake robot using the three locomotive gaits;
rectilinear, clockwise, and counter-Clockwise.

In this work, the snake robot localizes itself within the sim-
ulation framework using the simulation ground truth, hence,
we assume that the robot has the knowledge of its current
position and the global goal position at all times.

II. BACKGROUND

A. Mechanism of the Snake Robot

The construction of the snake robot in this paper bears a
strong similarity to Monsalve et al. [11], consisting of similar
modules as shown in Figure 1 and a newly proposed head
module. Each module is equipped with a COTS one degree
of freedom (DOF) actuator, known as ROBOTIS MX-28T.
These actuators are electrically connected serially via a 3-pin
cable to each other. The head module is especially designed
to accommodate an Intel realsense D435 stereoscopic camera
for the reconstruction of the environment. The tail module
is assumed to be connected to a remote static PC through a
three-pin cable for power supply and signal transmission. The
robot consists of a total of 11 joints and together these joints
accumulate to 11 degrees of freedom mechanism.

(a)

(b) (c)

Fig. 1: Illustration of the mechanical structure of the snake
robot developed in a simulation environment. (a). The com-
plete body of the robot with a custom-designed head (b). A
3D model of the servo motor, and (c). the connecting bracket

B. Locomotive Gait Generation

The design of the snake robot determines its capability
to perform 2D and 3D locomotion. Various gaits have been
developed and proposed for the locomotion of the snake
robot. As described by equation 1, locomotive gaits such as
rectilinear (linear progression), clockwise, counter clock-wise,
sidewinding, turning, and rolling can be generated using a
sinusoid function generator. In this work, we have mainly
utilized rectilinear, clockwise, and counterclockwise gaits to
navigate the snake robot from its current position to the global
goal position.

As mentioned in the previous sub-section II-A, the me-
chanical structure of the snake robot consists of orthogonally
connected, 1 d.o.f joints, where odd joints are ascribed to
modules that bend in the horizontal plane, while even joints
to modules that bend in the vertical plane. For a rectilinear
gait, only the even modules engage in the mechanism when a
vertical sinusoid wave perpendicular to the ground is passed;
the odd modules remain stationary. On the other hand, only
the odd modules will engage in the overall locomotion when
a horizontal sinusoid wave is passed through the mechanism,
and the even modules will stay stationary. Hence, orientation
knowledge of the odd and even modules with reference to
the plane is important for such mechanisms. In the case of
clockwise and counter clock-wise gaits, the intention is to
rotate the snake robot about its centroid. These gaits are
important when the robot has to set its orientation toward a
particular direction.

Locomotive gaits can be described by joint angles. A sine
function generator with an offset is used to model each joint
angle. As given by equation 1, the joint angle of the nth
module at time t, is:



Θ(n, t) =

{
AevenSin(ωt+ nδ) + αeven, n = even,

AoddSin(ωt+ nδ + ϕ) + αodd, n = odd,
(1)

where, Aeven and Aodd are the amplitude of even and odd
joints, ω is the angular frequency of the sinusoid joint motion,
δ is the spatial frequency that controls the lag between two
consecutive joints, and αeven and αodd are the offsets of
the even and odd joints, respectively. The selection of these
parameters changes the nature and type of gait generated by
the robot.

C. Mapping

For the autonomous navigation of the snake robot, 3D struc-
tural information such as the obstacle region and free region
is required. Various mapping technique has been proposed in
the literature that maintains a volumetric representation of the
environment in the form of free space, occupied space, and
unknown space. In this paper, we utilize Octomap [9]; an open-
source probabilistic technique for 3D reconstruction of the
environment. OctoMap is an octrees-based efficient technique
in terms of the storage of 3D models as it can capture huge
environments in compact maps. OctoMap employs a particle
filter and a probabilistic technique to effectively deal with
measurement noise and update the map. Each node in an
octree approach reflects the occupied space in a cubic volume,
also known as a voxel, employing a hierarchical data structure
for spatial subdivision in three dimensions. Each voxel is
recursively divided into eight sub-voxels until the minimum
voxel size is reached, which determines the resolution of the
octree. This will allow controlling the resolution of the map by
limiting the depth of the octree. Figure 2 shows an illustration
of the voxel structure and its octree representation.

Fig. 2: An illustration of the Octomap octree representation,
source of Fig. is [9]

The main advantages of using an octomap data structure in
autonomous navigation and exploration are:

• The space is defined as occupied, free and unknown areas
• No prior knowledge of the environment is required and

maps based on the current 3D information acquired from
the noisy sensors

• Estimate and maps the space in a probabilistic manner
that facilitates the dynamic environment and noisy sen-
sors information

• The built map can be saved, shared, updated, and elon-
gated as per requirement in one or multi-robot settings at
any instant of time

• The Robot Operating System (ROS) package allows
building the map in required resolutions

• memory and computationally efficient for mapping large
environments

D. Path Planning

Autonomous navigation depends on the planning of
collision-free paths. Path planning is concerned with finding
a collision-free path and generating a list of waypoints. It
is mostly performed in the configuration space which has
dimensions equal to the degree of freedom of the robot, and
each point in the configuration space represents the state
of the robot. The configuration space is divided into two
subspaces; free space, which has collision-free configurations,
and collision space, which reflects the configurations of the
robot being in a collision with the environment or itself. The
main objective of the path planning algorithm is to find a path
from the start configuration to the goal point configuration in
the free space.

Sampling-based motion planning, which avoids the require-
ment to compute the entire configuration space, has been
the subject of recent research to offer effective solutions to
path planning. Rapidly Randomized exploring Tree (RRT) is
famous among the sampling-based methods, that are prob-
abilistically complete, meaning they provide a (sub)optimal
path from start to goal position when an infinite time is
provided [12]. RRT* [13] is an improved version of the RRT
that is asymptotically optimal but is computationally expensive
due to its inconsistency with the single-query nature in high
dimensions.

In this paper, we utilized a variant of the RRT*; known
as informed RRT* [10]. Informed RRT* performs the same
as RRT* until the first (sub)optimal solution is found, af-
terwards it only samples from the subset (i.e. “an ellipsoid
that encompasses the initially found path”) of the search
space. A comparison of the RRT* and Informed RRT* is
illustrated in Figure 3. A robot should be integrated with re-
planning capabilities in order to traverse the space safely in an
unknown environment with little or no knowledge of the free
and collision space. As the robot moves in the environment,
it perceives more information through the perception sensors
and eventually applies collision checking to ensure the rest
of the configurations found in the path are collision-free. In
case any collision is detected, a re-planning takes place to plan
a new collision-free path from the robot position to the goal
position.

III. PROPOSED METHOD

This section explains the overall methodology of developing
an autonomous navigation framework for the snake robot.



Fig. 3: An illustration of the comparison between RRT* and
Informed RRT* in a random world. RRT* and Informed
RRT* work the same until a first solution is found, where the
informed RRT* focuses its search to only a subset of the space
that includes the first (sub)optimal solution, hence, Informed
RRT* consumes less computational resources and time

A. System Architecture

As shown in Figure 4, the overall system architecture of
the proposed framework consists of two main parts; sim-
ulation, and software implementation using ROS. We have
simulated the autonomous navigation of the snake robot in
CoppeliaSim [14]; a robotics simulator that is explained in
detail in section III-A1. In this work, we assume a perfect
localization of the snake robot from GPS/INS in the simulation
environment. Initially, the stereo images are calibrated and
rectified to compute disparity images and 3D point clouds
using ROS stereo image proc package [15]. The 3D point
clouds coupled with the transformation information are then
subscribed by the ROS Octomap package to generate the
3D map of the part of the environment perceived by the
stereo camera. Using the localization of the snake robot, these
local maps are transformed into a global frame of reference
for a complete map generation. The octomap publishes the
obstacle map (i-e occupied cells for visualization on RVIZ)
and complete binary map which includes a compact binary
stream encoding free and occupied cells. We then implemented
Informed RRT*; an improved version of the RRT* on the
octomap binary map for an obstacle-free path from the robot’s
current position to the goal position. A linear interpolation
technique is applied on the path provided by the path planner
to smooth the path. Finally, a trajectory tracking controller is
implemented to navigate the robot on the desired path. In the
later sub-sections, we explain the main blocks of the system
architecture in detail.

1) Simulation Environment: The performance of the pro-
posed framework for the autonomous navigation of the snake
robot is evaluated in a simulated environment using Cop-
peliaSim [14] and ROS. CoppeliaSim is a flexible, and
general-purpose robotics simulator. It has distributed control
architecture, due to which, each object in CoppeliaSim can
be controlled using ROS nodes, remote API clients, em-
bedded scripts, plugins, or custom solutions. Furthermore,
CoppeliaSim has a nice integration with SDKs written in

Fig. 4: Overall systems architecture of the proposed framework

C/C++, Java, Python, Matlab, and Lua, which make it easy
to use and implement the realization of any robotics idea.
As shown in figure 6(a) and 6(c), we have created a maze
environment that includes walls as an obstacle. The location
of the start and goal position, coupled with the structure of
the maze environment is set in such a way that evaluates
the continuous planning and re-planning of the path planner
while the snake traverses the goal point. The goal location is
represented with a dummy object on a green circle that the
snake robot has to reach while avoiding obstacles.

2) Environmental Perception: A stereo camera is mounted
on the head module of the snake robot to enable visual feed-
back of the environment while navigating unknown terrains.
In particular, because of the limited space and overall weight
distribution, a relatively small stereoscopic vision system is
embedded in the snake robot. In the proposed framework, we
have chosen a low-cost COTS Intel Realsense D435 stereo-
scopic camera as the only perception sensor. Intel Realsense
provides calibrated left and right images and is ideal for depth
estimation in the range of 0.3 to 3 meters. For processing the
stereo images, we have used the stereo image proc package
of the ROS. The stereo image proc package subscribes to
the left and right images of the stereo camera, estimates the
depth information, and publishes a 3D point cloud.

3) Mapping: In this framework, the 3D structural map
of the environment is required for autonomous navigation.
The map should be maintaining the representation of the
environment in the form of free space, occupied space, and
unknown space. As mentioned in section II-C, volumetric
representations such as the Octomap are one of the 3D
map representations that have the advantage of providing
this information about the environment. Octomap − server;
which is a mapping library, to compute and create the 3D
maps of an environment using the Octomap technique, is
already integrated with the ROS. Hence, in this work, we



take the advantage of Octomap server to build the map.
Octomap subscribes to the 3D point cloud of the stereo
camera explained in section III-A2 and tf transformation
that provides the transformation between the stereo frame to
the world frame. It then computes the map and publishes:

• Octomap binary, which is a compacted stream of oc-
cupied and free space,

• occupied cell vis array, which is the obstacle map/
occupied cells for RVIZ visualization,

• point cloud that includes the centers of all occupied
voxels, and

• 2D projected occupancy grid mappings

Fig. 5: Flow diagram of the path planning and tracking
methods

4) Path Planning: The octomap provides a 3D represen-
tation of the environment that includes free and occupied
spaces. The next step after mapping is to implement a path
planning algorithm that provides an obstacle-free path from the
robot’s current position to the global goal position. We have
implemented a ROS node for path planning that uses a flexible
collision library [16] to compute and check the collisions
with obstacles and an Open Motion Planning Library [17]
to plan paths using Informed RRT*. The path planning node
subscribes to the octomap binary and tf topics to plan paths
and then publishes waypoints. Since, octomap provides the
advantage of updatability; it can map dynamic objects unless
they are in the perception range of the stereo camera, hence, if
any object happens to be colliding with the existing waypoints,
the planner will re-plan the path to avoid collisions.

5) Autonomous Navigation: The complete architecture of
the path-following strategy is illustrated in figure 5. After
receiving the planned path from the planner, we then apply
linear interpolation on the waypoints to form a continuous low-
cost trajectory from the current position of the snake robot to
the goal position. This interpolated trajectory is then divided
into path patches with a maximum length of 1 meter. Each
patch serves as a local path with the start point as the current
position of the robot and the end point as the local goal. Here,
we consider the head module as the reference point for path
planning as the stereo camera is mounted on the head module,

which perceives the environment. Also, from tail to head, we
calculate the heading vector of the snake robot. The objective
of the path-following algorithm is to generate a sequence of
gaits based on the Perspective Angle (PA), Angle Threshold
(AT), and Distance Threshold (DT), that can move the snake
robot toward the local goal. PA, AT, and DT, respectively, are
angles between the robot heading and the current local goal, a
threshold for PA to actuate forward gait, and a goal-reaching
threshold distance. We use Eq. 2 for AT and 0.5m for DT. The
CD in Eq. 2 is the current distance between the local goal and
the robot’s location. Depending on the perspective angle and
distance to the local goal, at a particular time, anyone from the
three gaits (i-e rectilinear, clockwise, and counterclockwise)
will be selected which reduces the error between the planned
and tracked path.

AT = max(20, 20 + (1− CD) ∗ 60) (2)

(a) Top view of the simulation envi-
ronment.

(b) Top view of the 3D map.

(c) Isometric view of the simulation
environment.

(d) Isometric view of the 3D map.

Fig. 6: Results of the mapping of complete maze environment,
(a). and (c) are, respectively, the top view and isometric view
of the ground truth. (b) and (d) are the respective 3D maps
generated using the octomap mapping.

IV. EXPERIMENTAL SETUP AND RESULTS

To validate the performance of the snake robot to map the
urban search and rescue environment and plan an obstacle-free
path, we have tested our method in a maze-like environment.
The environment spans 100m2 area with (10m × 10m) di-
mensions. Figure 6(a) illustrates the test environment, which
consists of walls, plain flooring, a snake robot, a start (shown



as a yellow circle), and a global goal location (shown as a
green circle).

A. Mapping

Figure 6 shows the actual ground truth and the generated
map of the complete maze environment using our method. For
creating a map of the maze environment, no prior information
is required, except the real-time localization of the snake robot
in the world frame of reference. As can be seen from Figure 7,
the local map, created through the local perception of the
stereo camera is iteratively transformed into the global map
as the robot traverses the environment over time. Because of
the stereo camera range limitations, the map gets distorted
when the distance between the camera and an object is less
than 0.3 meters, which is the lowest range that the stereo can
capture depth.

B. Path Planning

The performance of the path planning and autonomous
navigation technique is evaluated in two different situations,
depending on the level of map detail. When the snake robot
is assigned a task to autonomously navigate in the USAR
region and explore the environment for victims, the robot
does not bear any information about the environment at that
time. The only information it has is self-localization and the
object (i.e. victim) to be explored and identified. We call
this situation autonomous navigation without an apriori map,
where the robot navigates through the environment to reach
the global goal position and iteratively creates the 3D map, as
shown in Figure 7. This map helps both the snake robot and
the rescue workers; the rescue workers receive and identify
access through which the victim can be traced and rescued,
and the snake robot can directly be reeled back by planning the
shortest path from the victim’s location to the rescue workers.
Furthermore, this map can be utilized in the later stage to
deliver food, water, and medication to victims in the shortest
possible path and time. Navigating from the victim’s (i-e goal)
position to the rescue worker’s (i-e start) position while having
a complete map of the environment is our second situation and
we call it autonomous navigation with an apriori map. We
performed five experiments, where the environment, start, and
goal position was kept the same, and the results are provided
in Figures 8, 9, and Table I. In this work, we assume the
snake robot has an apriori knowledge of its localization and
the location of the object(i-e. victim) to reach.

1) Autonomous Navigation without an apriori Map: In this
situation, as shown in the temporal representation in Figure 7,
the map of the environment is updated in real-time to include
all the possible static and dynamic obstacles that happens in
the path of the robot. The path planners also replan if the
existing path leads to collision with obstacles. The red cube in
Figure 7(b) is the current position of the robot, dark magenta
cubes are the waypoints provided by the path planner, and
red dots show the trajectory followed by the snake robot.
This situation is also shown in Figure 8, which shows the
comparison of the actual planned path (dotted blue curve) and

the traversed trajectory (continuous red curve) by the snake
robot. As mentioned in table I, the total planned distance
from start to goal location is 19.19 meters, using the three
locomotive gaits, and the snake robot took around 7 minutes
(i-e. 426 seconds) to traverse the planned path. The robot
iteratively reaches the local goals (blue circles) to reach the
global position.

2) Autonomous Navigation with an apriori Map: The
robot reaches the global goal in the first situation explained
previously, and has a complete map of the environment. In
this situation, we replace the start and global location of
the goal. Fig. 9 illustrates the results of this situation where
the blue and red curves, respectively, represent the optimal
planned path and robot’s footprints to the final goal.

TABLE I: Trajectory Distances

Experiment Planned Followed Time
Distance (m) Distance (m) (sec)

Without an apriori Map 19.193 22.534 426
With an apriori Map 13.979 16.752 346

Since the robot already has a complete map from its current
position to the rescuer’s (i-e. goal) position, therefore, the
path provided by the planner is also short as compared to
the previous situation. Compare to the previous situation, the
snake robot takes 346 seconds to navigate over 13.97 meters of
distance. Tab. I contains the information on trajectory distances
in meters and traversal time in seconds for navigation with
and without an apriori map. Planned distance is the distance
from the start to the goal position, planned by the path
planner. While followed distance is the trajectory traversed
by the snake robot while navigating over the planned path.
From Tab. I, we can see that the path planner returns the
shortest path (i-e 13.979m) with an apriori knowledge of the
map and a slightly longer path without an apriori map. This
difference in distances is due to the motion planning and
control strategy. It also shows the importance of building a map
of the environment for SAR operations, so that the victim can
be approached in the shortest time possible to supply medical
aid and food, using the map.

TABLE II: Trajectory Following Error (m) Statistics

Experiment Mean Std Min Max
At local goal Without Map 0.102 0.098 0.002 0.379

points With Map 0.199 0.108 0.012 0.391
At planned path Without Map 0.059 0.058 0.000 0.318

waypoints With Map 0.046 0.0454 0.000 0.142

The proposed motion planning method provides acceptable
results. The statistics of deviation from the asymptotically
optimal path are provided in Tab.II. We define the deviation
of the robot from the planned path as an error. We show the
error statistics at planned path points and over each local goal
point. The mean error at planned path waypoints and followed
trajectory by the snake robot, with and without an apriori map,
respectively is 0.046 and 0.059, with a standard deviation of
0.0454 and 0.058. Similarly, the mean error between the points



(a) t=00:00 (m:sec) (b) t=01:10 (c) t=04:10 (d) t=07:09

Fig. 7: Temporal illustration of the online map generation, path planning, and navigation of the snake robot towards the goal
location autonomously without a map.

Fig. 8: Results of the path planning algorithm when map
is created while the snake traverses the environment, (a).
blue circles show the actual waypoints provided by the path
planner, (b). the blue dotted line shows the interpolation of the
waypoints to form a smooth trajectory, and (c). the red line is
the actual trajectory traversed by the robot

at each local goal over the planned path and trajectory followed
by the snake robot with and without an apriori map is 0.199
and 0.102. The robot often crosses the planned path points,
resulting in the minimum error of 0m in the case of error
between the planned path and traversed trajectory. The error
lies in the range (0, 0.379) meters in all cases, which is due
to the goal reaching the threshold (DT) of 0.5m.

Fig. 9: Results of the path planning algorithm when the snake
robot has already reached the victim (i-e. goal) position and
has a complete path to the initial position, (a). blue circles
show the actual waypoints provided by the path planner, (b).
the blue dotted line shows the interpolation of the waypoints
to form a smooth trajectory, and (c). the red line is the actual
trajectory traversed by the robot

V. CONCLUSION

In this paper, we presented an autonomous navigation
framework for a snake robot navigating in an Urban Search
and Rescue environment. The framework is implemented and
developed in a simulation environment using CoppeliaSim and
ROS on a Linux OS. We integrated state-of-the-art techniques
for path planning, mapping, and implemented an autonomous



navigation system that enables the snake robot to navigate
from its current position to the goal position while avoiding
collisions with the obstacles. We evaluated our system in
five experiments and the results provided have shown that
the proposed system can plan an optimal path in a cluttered
3D environment where it is important to compute the 3D
structure as the snake traverses over the environment. Future
work will include the implementation of an object recognition
mechanism rather than goal tracing, and instead of using the
localization ground truth from simulation, using SLAM to
localize the robot without the requirement of GPS.

VI. ACKNOWLEDGEMENTS

This research is conducted at Control Automotive and
Robotics Lab (CARL-BUITEMS), funded by National Center
of Robotics and Automation (NCRA) with the collaboration
of Higher Education Commission (HEC) of Pakistan.

REFERENCES

[1] R. Murphy, “Marsupial and shape-shifting robots for urban search and
rescue,” IEEE Intelligent Systems and their Applications, vol. 15, no. 2,
pp. 14–19, 2000.

[2] X. Xiao and R. Murphy, “A review on snake robot testbeds in gran-
ular and restricted maneuverability spaces,” Robotics and Autonomous
Systems, vol. 110, pp. 160–172, 2018.

[3] M. Tanaka, K. Kon, and K. Tanaka, “Range-sensor-based semiau-
tonomous whole-body collision avoidance of a snake robot,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1927–
1934, 2015.

[4] G. Li, H. B. Waldum, M. O. Grindvik, R. S. Jørundl, and H. Zhang,
“Development of a vision-based target exploration system for snake-like
robots in structured environments,” International Journal of Advanced
Robotic Systems, vol. 17, no. 4, p. 1729881420936141, 2020. [Online].
Available: https://doi.org/10.1177/1729881420936141

[5] G. Sartoretti, T. Wang, G. Chuang, Q. Li, and H. Choset, “Autonomous
decentralized shape-based navigation for snake robots in dense envi-
ronments,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021, pp. 9276–9282.

[6] W. Yang, G. Wang, and Y. Shen, “Perception-aware path finding and
following of snake robot in unknown environment,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 5925–5930.

[7] Z. Bing, C. Lemke, F. O. Morin, Z. Jiang, L. Cheng, K. Huang,
and A. Knoll, “Perception-action coupling target tracking control for
a snake robot via reinforcement learning,” Frontiers in Neurorobotics,
vol. 14, 2020. [Online]. Available: https://www.frontiersin.org/articles/
10.3389/fnbot.2020.591128

[8] S. N. Khan, T. Mahmood, S. I. Ullah, K. Ali, and A. Ullah, “Motion
planning for a snake robot using double deep q-learning,” in 2021
International Conference on Artificial Intelligence (ICAI), 2021, pp.
264–270.

[9] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in 2009 IEEE International Conference
on Robotics and Automation, May 2009, pp. 2878–2883.

[10] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 2997–
3004.

[11] J. Monsalve, J. Leon, and K. Melo, “Modular snake robot oriented open
simulation software,” in The 4th Annual IEEE International Conference
on Cyber Technology in Automation, Control and Intelligent, 2014, pp.
546–550.

[12] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,
“Probabilistic completeness of rrt for geometric and kinodynamic plan-
ning with forward propagation,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. x–xvi, 2019.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” CoRR, vol. abs/1105.1186, 2011. [Online]. Available:
http://arxiv.org/abs/1105.1186

[14] E. Rohmer, S. Singh, and M. Freese, “V-rep: A versatile and scalable
robot simulation framework,” 11 2013, pp. 1321–1326.

[15] J. L. Patrick Mihelich, Kurt Konolige. Stereo image proc. [Online].
Available: http://wiki.ros.org/stereo image proc

[16] Flexible collision library. [Online]. Available: https://
flexible-collision-library.github.io/

[17] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics Automation Magazine, vol. 19, no. 4, pp. 72–82,
2012.

https://doi.org/10.1177/1729881420936141
https://www.frontiersin.org/articles/10.3389/fnbot.2020.591128
https://www.frontiersin.org/articles/10.3389/fnbot.2020.591128
http://arxiv.org/abs/1105.1186
http://wiki.ros.org/stereo_image_proc
https://flexible-collision-library.github.io/
https://flexible-collision-library.github.io/

	Introduction
	Background
	Mechanism of the Snake Robot
	Locomotive Gait Generation
	Mapping
	Path Planning

	Proposed Method
	System Architecture
	Simulation Environment
	Environmental Perception
	Mapping
	Path Planning
	Autonomous Navigation


	Experimental Setup and Results
	Mapping
	Path Planning
	Autonomous Navigation without an apriori Map
	Autonomous Navigation with an apriori Map


	Conclusion
	ACKNOWLEDGEMENTS
	References

