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Abstract—Motion planning for a snake robot in an unknown 
complex environment is a long-standing research problem be-
cause of the complex control of the modular mechanism. We 
propose deep reinforcement learning-based novel framework for 
motion planning. In this model-free framework, we propose a 
double deep Q-leaming-based technique to learn the optimal 
policy for reaching the goal point from a random start point; in 
a minimum number of steps in various unknown environments. 
In this approach, the agent learns to minimize the distance 
between the current and goal positions by aligning its yaw 
angle to the goal points through controlling multiple locomotive 
gaits. For experimental evaluation, we trained and tested the 
model in obstacle-free terrains. For training, we selected the 
model on the mud-terrain and tested for 50 episodes on five 
different terrains concrete, default, metallic, mud, and wooden. 
From simulation results, we observe the learned-optimal policy 
shows promising results for all unknown environments with 
a performance efficiency of 100% for all terrains except the 
wooden-terrain where it fails for only one episode and achieves 
98% efficiency.

Index Terms—Double deep Q learning, Experience replay 
memory, Model free, Motion planning, Off-policy, Snake robot.

I .  I n t r o d u c t i o n
Increasingly robotics is being applied to real-world prob-

lems, be it industrial, defense, or civilian applications. The 
robots help people to increase efficiency as well as the quality 
of work. Various types of robots have been developed in the 
last few decades, but recently bio-inspired robots [1] have 
caught great attention of the research community done for 
their agility and unique physical capabilities that allows them 
to navigate and transverse varied environments. Among the 
bio-inspired robots, the limbless robots (a snake robot) have a 
diverse range of applications because of their high agility and 
adaptability. The idea of a snake robot was first introduced by 
Prof. Hirose [2] and its mechanics were first described in [3].

The snake robots are designed as modular mechanisms 
to achieve the agility and adaptability of their biological 
counterparts [4]. The high flexible modular joints with many 
Degrees of Freedom (DoF) assist them to change their shape 
and navigate into a highly cluttered environment. However, 
this modularity comes with its challenges. The control o f such

* Equal contribution of the authors.

a highly maneuverable robot requires controlling a lot o f joint 
actuators and considering their physical constraints for motion 
control.

Over the past many years a lot of work has been done in 
snake locomotion (gait design) focusing on low-level control 
inputs to individual joints using sinusoid-based methods [2], 
dynamics-based methods [5], and central pattern generator 
based methods [6]. These gaits have rhythmic functions that 
change a snake robot’s shape in the form of a wave propagating 
along its body. An approach presented in [7], glued high-level 
motion planner and low-level control for a snake robot and 
accomplished motion planning using conventional algorithms. 
Their algorithm lacked results for different terrains and envi-
ronmental adaptability. The complex control task includes the 
internal regulation of body joints and external interaction with 
the ground. Therefore, the model-based methods usually fail 
to control the robots adaptively in a challenging environment 
[8].

Hence, there exists a need for motion planning algorithms 
that work independently of the underlying robot’s physical 
nuances and are robust to environmental changes. Some recent 
work using Reinforcement Learning (RL) for path planning [9] 
& [10] shows promising results as adaptive motion planners 
in robotics. An object tracking using deep-RL has been 
presented in [11] and accomplish robust results in a dynamic 
environment.

Therefore, RL-framework provides a direction, and we 
propose a novel deep-RL-based algorithm for the motion 
planning of a snake robot. In the proposed technique, we use 
a double Deep Q-network (double-DQN) for motion planning. 
The double-DQN is a model-free RL-algorithm, which reduces 
the overestimation and divergence issues of Q-network [12] & 
[13], and achieves promising results on various tasks [14].

The main objective is to reach the goal point in a minimum 
number of steps. If the direction of the snakehead is toward the 
goal point, then it finds the shortest distance. Therefore, we 
consider the respective angle between the heading direction of 
the snake and the goal point as state-space. To improve the 
efficiency of the RL framework, we significantly reduce the 
state space, which helps in the convergence of our RL-based 
controller, and is evident from the experimental results. Based
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on the respective angle, the artificial agent (double deep Q- 
leaming) learns the optimal policy to select the specified gait to 
reach the goal point in a minimum number of steps. To verify 
the efficiency and robustness of the proposed algorithm, we 
trained our model in mud terrain and tested it on five different 
unknown terrains of the CoppeliaSim simulator. In a series of 
simulated experiments, we demonstrated the effectiveness of 
our proposed controller in varied environmental conditions and 
its resilience based on mean-steps and performance efficiency. 
From the experimental results, it is evident that the agent 
reaches the goal point with a performance efficiency of 100% 
(tested for 50 episodes) in concrete, default, metallic, and mud- 
terrain using the learned policy. While it fails on one episode 
of the wooden terrain, where the efficiency is 98% .

II. B a c k g r o u n d

A. Reinforcement Learning Framework
A Reinforcement Learning (RL) system learns how an 

agent achieves its goal by trial-and-error interactions with 
the environment [12]. The agent based on the observations, 
interacts with the environment by performing an action. After 
the action is performed in a given state and a new state is 
achieved, the RL agent receives some reward; a numerical 
value R  G R. The main objective of the RL agent is to 
learn the actions, which will maximize the future cumulative 
rewards (long-term expected return) when starting from some 
initial state and proceeding to a terminal state. Hence, the 
agent only explores the actions which have the highest future 
rewards, without expressing which actions to take.

Fig. 1: Illustration of agent-environment interaction in RL 
framework. Where St represents the state of an agent at time 
step t, based on observations selects an action At and receives 
a reward Rt+i after transiting to a new state St+1.

A general RL problem is formulated as a discrete time 
stochastic process in which an agent interacts with its en-
vironment at each time step; t =  0 ,1 ,2 ,___The agent at
time step t  at the environment’s state St £ S  (<S is a finite 
set o f states) and based on observations selects an action 
At G .A(s) (^4(s) a finite set of actions), as illustrated in Fig. 1. 
After one time step, as a consequence of its action, the agent 
receives a numerical reward, Rt+i G R  C  R and, transitions 
into a new state St+1- Where St and At are the random 
variables having well defined discrete probability distributions. 
For a specific value of these random variables s' G S  and 
a' G A, there is a probability of those values occurring at

time t. If the sequence of rewards received after time step t 
is denoted as Ri+i, R 1+2, R l+3, • • •, then expected discounted 
return denoted Gt is defined as some specific function of the 
rewards sequences as:

G t=R t+1 +  l R t+2 +  7 2^t+3 +  • • •
=Rt+i +  i G t + i , (1)

where 7  G [0,1] is a discount rate or factor, which defines 
the short and farsightedness of the agent. While an equal sign 
with a dot (= ) represents equivalent by definition.

One of the novel technique in RL is Temporal Difference 
(TD) learning [12]. TD methods learn directly from raw expe-
rience without having the environment’s model, update estima-
tions based on different learned estimates, without waiting for 
an outcome [15]. TD and optimal control [16] are combined 
in Q-leaming [17]. The optimal control finds a mapping that 
prescribes actions based on measured environmental states to 
optimizes some long-term rewards. For estimation of optimal 
value, Q-leaming algorithm builds the action-value function, 
a primary part of reinforcement learning [17].

B. Q-Leaming
A  sequential decision problem can be solved by learning the 

estimated optimal values of each action, defined in terms of 
the expected sum of future reward Gt . The value of an action 
a in a state s (Qn(s , a)) by following the policy 7r is defined 
as:

Qn(s,a)=E^[Gt\St =  s ,A t =  a], V s e S , a e A .  (2) 
The optimal policy can be computed from the optimal values 
(Q*(s, a) =  m axQ x (s ,a )) by selecting the highest value7T
action in each state.

The optimal action values (estimates) can be learned by a Q- 
leaming algorithm [17], a form of off-policy TD learning [15]. 
The off-policy learning evaluates and improves one policy and 
selects an action based on another policy. For many complex 
robotic problems, the computation of action values for all 
states is a complicated task. Therefore, a parametrized value 
function Q (s,a ;w )  can be incorporated, where w  indicates 
the parameters. The Q-leaming update parameters, after taking 
an action At in-state St and transition to a new state St+i 
while receiving a reward Rt+i, is:

w t+i =  w t +  a (R t+i +  7  max Q(St+i ,a ;w t )
'  a

- Q ( S t ,A t ;w t ) )V WtQ{Su At ;w t ), (3)

where a  represents a learning rate. While the target is repre-
sented as:

YtQ= R t+i+'r^aax.Q(St+i ,a ; w t). (4)
a

The max operator in Eq. 4 expresses the Q-leaming algorithm 
chose the greedy values, which results in overoptimistic value 
estimation.

C. Double Q-Learning
To avoid the overestimation problem of Q-leaming, double 

Q-leaming algorithm is presented in [18]. It decomposes the 
max operation of the target into action selection and action
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evaluation. In double Q-leaming algorithm, two value estima-
tion functions learn from experience by randomly updating 
one of the value estimation functions. Therefore, it contains 
two sets of weights, w t and w 't . For each update, one set of 
weights compute the greedy policy while the other compute 
its value. The target of double Q-learning is presented as:

Y ^°meQ= R t+1 + 7<3(St+i, argmax<2 (Si+i, o; w t) ;w 't )
a

(5)
For Eq. 5, one can observe that action is selected, in the 
argmax, from online weights w t . Which represents the Q- 
leaming estimates the value from a greedy policy. While the 
double Q-learning uses a second set of weights w 't  to evaluate 
the value of this greedy policy. However the second set of 
weights are updated symmetrically by switching the roles of 
w t and w 't . The double Q-leaming avoids the overestima-
tion problem, but combining model-free RL algorithms (Q- 
leaming) with non-linear function approximation may cause 
the Q-leaming algorithm to diverge, because of the correlation 
between samples and non-stationary targets [13]. To solve 
these issues the Deep Q-Network (DQN) has been presented 
in [14].

D. Deep Q-Networks

With the recent improvement in deep neural networks, a 
novel artificial agent termed DQN has been presented in [14]. 
DQN is a multi-layered neural network, which generates a 
vector of action values Q(s, •; w ) for a given state s, while w  
represents the parameter or weights of the network. The neural 
network maps n-dimensional state space Mn to m-dimensional 
action space Mm. To resolve the divergence problem of Q- 
leaming, the DQN uses a fixed target network along with 
experience replay. The experience replay addresses the issue of 
correlation. To improve the stability issue, for multiple updates 
(iterations), fixed target parameters or weights w \ar are used 
in the target value calculation, the weights are being updated 
with w t . The target of DQN is then:

Y DQN= R t+1+ 'ym a xQ (S t+ i,a ;w lar). (6)
a

To integrate the experience replay, the observed transitions are 
stored in the replay memory for some time and the network 
weights are updated by uniformly sampled values from this 
memory. From Eq. 6, one can observe the max operator makes 
the deep Q-leaming algorithms to select overestimated values.

E. Double-DQN

Double Q-leaming algorithm reduces the overestimation 
problem while the DQN controls the divergence issue. There-
fore, by combining both Double Q-leaming and DQN, a new 
algorithm has been presented in [19], referred to as Double- 
DQN. The double-DQN uses two identical neural networks, 
the online and the target network. The double-DQN evaluates 
the greedy policy by an online network while using the target 
network of DQN to estimate its value. The target of double- 
DQN is presented as:

Y ? oMeDQN± R t+1+ 'rQ (St+1,axgm axQ (S t+1, a ;w t ); w * ^)
a

(7)
In contrast to DQN, the Double DQN has a target network with 
the parameter w \ar, which evaluates the quality of the actions. 
The Q-network computes the greedy policy with parameter 
w t . In comparison to the Double Q-leaming (Eq. 5), the 
weights of the second network w 't are replaced with the 
parameters of the target network w \ar for the evaluation of 
the current greedy policy. The update to the target network is 
the same as for the DQN and contains a periodic copy of the 
online network.

III. P r o p o s e d  M e t h o d o l o g y

We propose an RL-based scheme for motion planning of 
a snake robot (agent) using the Double-DQN. The main 
objective of the agent is to reach the goal point (an indoor 
plant in our case) from its current location, using various 
locomotive gaits, in minimum time steps. The goal point Q  
and current location P  is shown as a big green dot and a 
big red dot, respectively, in Fig. 2. To achieve this objective,

Fig. 2: The points P (p x ,py) and Q(qx ,qy) define the current 
position of the snake robot and goal respectively. The angle 
P is the respective angle between the snake’s current heading 
vector H  and optimal heading vector D . The 6 represents the 
angle between vector D  and reference x-axis.

we use the Double-DQN algorithm presented in [19] using a 
linear e-greedy policy, in which e has value in range [0, 1] and 
decays linearly from to e/. At each time step, we generate 
a random number between (0, 1) from a uniform distribution. 
If this random number is less than the current value of e, the 
agent takes a random action a from the available action space 
A. Otherwise, we pass the current state s £ S  to the online 
network, and the agent takes the action a having the maximum 
state-action value Q (s,a). In response to action a, the agent 
moves to a new state s' and receives a reward R t+i from
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the environment. At each time step, the tuple (s, a ,R t+ i , s r), 
referred to as a transition, and a Done flag is stored in the 
Experience Replay Memory(ERM). Where the Done flag is 
a Boolean variable, which indicates the termination of an 
episode. At each time step t, a batch of transitions is taken 
from the ERM, and weights of the online network of double- 
DQN are updated using Eq. 3. So the action policy 7r is 
updated to i t ' ,  as shown in Fig. 3. In the proposed scheme,

Fig. 3: Illustration of double DQN training process. The agent 
observes the current state s, takes an action a using policy 
7r, transits to the next state s', receives a reward R t+1 from 
the environment and Done flag stores episodes’s completion 
information. All these transitions are logged in the ERM. At 
each step a batch of transitions is used, to update the agent’s 
policy 7r.

we use ¡3 to formulate the states of the agent. Where P is the 
angle between the snake heading vector H  (red vector) and 
vector D  (green vector), as shown in Fig. 2, and computed

P = 6 — yaw (8)

Here yaw  is the angle between the vector H  and x-axis 
provided by the simulator. Whereas, 0 is the angle of vector 
D  with respect to the x-axis and computed as:

6 =  tan-1* t ^ - .  (9)
Q x - P x

In reinforcement learning, a low dimensional state space S  
is computationally robust compared to a high dimensional 
state-space. As in our case, the respective angle P has infinite 
values in the given range [—180° ~  180°], which leads to high 
complexity. Moreover, the locomotive gaits can not respond to 
minute changes (less than 1°) in respective angles. To solve 
this problem, we map the value of the snake heading direction 
using the continuous values of angle ft to integer i using:

i  =  m  =

—180 < P  <  180 G R and
l +6° where

0 <  i <  120 G Z0+
( 10)

Furthermore, we assign a one dimensional vector V 1 for every 
integer i of dimension 1 x 121, as shown in Fig. 4. The

Respective Angle :

/3 -h-------------------------1-
-180 0

Onto — mapping

----1—
+180

Vector : V ’ 0 0 0.5 0.75 1 0.75 0.5 0 0

V j  V \  -  V j - 2  U j - 1  V j  V'j + 1  ^ + 2  -  ^ 1 9 ^ 1 2 0  

1 x 121

Fig. 4: The illustration of onto-mapping of respective angle P 
to the Vector V*. The domain of this mapping function is of 
infinite dimension (—180 < P <  +180 G R) while the range 
is finite (121 vectors V*, each of dimension [1 x 121]). The 
Vj represents the j th component of the vector V*.

component of vector V* can be represented as vj where j  
represents the index of that component (0 <  j  <  120 G Z0+) 
of vector V 1. The values of these components are computed 
as:

1, if j  =  i
0.75, if j  =  i ±  1
0.5, if j  =  i ± 2
0, otherwise

After computing the vector V \  we produce a 2D  array of 
dimension 6 x 121 by replicating the vector V 1 6 times for a 
respective angle p  of a single state. The set of all these 2D 
arrays builds our state-space S, so the agent has 121 discrete 
states.

The objective of our agent is to minimize the angle P by 
readjusting its yaw angle and trying to reach the goal point 
using various locomotive gaits, in a minimum number of steps 
as shown in Fig. 2. To simplify the complexity of motion, we 
use only three locomotive gaits of the snake robot as action- 
space A: rectilinear, right-serpentine, and left-serpentine [3]. 
The target of the agent is to learn the optimal action for 
locomotion to reach the goal point, with the highest rewards 
received after each action.

After an action a is performed the agent moves to a new 
location, therefore the distance from the goal location changes 
which in turn changes the angle p. If the agent receives a 
reward or penalty based on P, the agent takes the action 
to remain in the direction of the goal location. After the 
agent’s heading aligns with the direction of the goal point, 
the agent only actuates the forward locomotive gait, to reach 
the goal point by following the shortest possible path. Hence, 
we compute the reward function Rt based on respective angle 
P defined as:

R t

100, if  terminal state 

otherwise
(12)
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(a) CoppeliaSim environment in (b) CoppeliaSim environment in 
which snake robot and goal point which snake robot and goal point 
can be seen on mud terrain. can be seen on metallic terrain.

Fig. 5: CoppeliaSim environment in which snake robot and 
goal point can be seen on different terrains.

The vicinity of one meter to the goal point is considered as the 
terminal state of the episode, and the agent receives a positive 
reward of 100. For all other states, it is penalized based on 
the respective angle ¡3. It receives a minimum penalty when 
the value of /J is a small and high penalty for higher value of 
f3. From these reward values, the agent evaluates the actions 
and responds to the environment accordingly.

IV. E x p e r i m e n t a l  E v a l u a t i o n

We used a robot simulator ’’CoppeliaSim V  — 4.1” for 
our experimental evaluation (for more details see [20]). Cop-
peliaSim is a well-known physics simulator among the robotics 
community which provides flexibility to create robots of 
various kinds by importing pre-designed 3D-CAD models. 
For our experimental evaluation, we used an obstacle-free 
environment of 4 x 6 meters. It comprises of a snake robot 
as the agent and an indoor plant as a goal point. The hyper- 
redundant structure of our snake robot consists of ten modular 
joints, which are segregated into three groups; head, body, and 
tail. We performed the training on the mud-terrain to mimic 
the real-world environment, as shown in Fig. 5a. We used two 
identical neural networks, online network and target network, 
for double-DQN. The neural network consists of a convolution 
layer with 32 kernels of size 2 x 2 ,  one flatten layer of size 
1 x 5760, one fully connected layer of 64 neurons, and an 
output layer as shown in Fig. 6. The size of the output layer 
is equal to the number of actions available (three in our case).

Moreover, we used stride of 2 x 2 with “relu” as the 
activation function and “Adam” as the optimizer. At the output 
layer, we used a linear activation function, which gives the 
estimated Q(s, a) value for each state-action pair. We used a 
discount factor (7 ) of 0.98 and a learning rate (a) of 0.00025 
for target policy Eq. 7 and weights are updated as mentioned 
in Eq. 3. We used linear e-greedy policy which is updated 
after each step, with an initial value e* =  1 and final value 
€f = 0.1. The target network was updated after 25 episodes, 
while an episode is the maximum number of steps allowed to 
reach the goal point. For experimental evaluation, we selected 
random samples in batches of 64, from ERM, with maximum 
samples of 30,000, and minimum samples of 500. In this

Fig. 6: Illustration of the network architecture which consists 
of input layer, hidden layers and an output layer of dimensions 
(1@6 x 121), (32@3 x 60, l x  5760, 1 x 64) and (1 x 3) 
respectively.

experiment, we used 100 steps per episode. All the hyper-
parameters of Double-DQN are shown in Tab. I. We developed

Param eter Value
Activation function for hidden layers relu
Activation function for output layer linear
Optimizer Adam
Discount factor (7) 0.98
Learning rate (a) 0.00025
Initial epsilon (e^) 1
Final epsilon (ef) 0.1
Update epsilon (in steps) 1
Target network update frequency 25
Minimum replay memory size 500
Replay memory size 30000
Batch size 64
Maximum steps per episode 100

TABLE I: The hyperparameters used to train the double-DQN.

the neural network for training the Double-DQN in Python 
using TensorFlow and Keras as the backend framework. The 
training was carried out on an Intel Core i5-4690 CPU (with 
4 processing cores each running at 3.5 GHz) and 4GB RAM. 
The training process took about 22 hours to complete, details 
can be found in the following section.
A. Training Results

We trained the robot using CoppeliaSim in mud-terrain with 
the parameters presented in Tab. I. The agent improved its 
action policy as the training proceeded, depicted in Fig. 7. 
The dark blue curve in Fig. 7 represents the rolling mean 
of the step rewards while the spread around it is the standard 
deviation (Std) of the step rewards. As e decays, the mean and 
Std of step reward increase, since the agent is nearing the goal 
point. After 20,000 training steps, shown as a red dotted line, 
the value of e reaches 0.1 and the mean reward curve becomes 
stable. This stable reward indicates that the agent has reached 
the goal point. The learning process of the agent is shown in 
Fig. 8. The blue and green curves indicate the rolling mean 
reward per episode and steps per episode, respectively. The 
negative slope of the green curve shows that, on average, the 
agent reaches the goal point in fewer steps as the number of 
episodes increases. The initial positive slope of the blue curve 
expresses the increase of reward per episode.

During the initial phase of the training, the number of steps 
per episode is high (90—100) leading to lower episodic reward
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Fig. 7: The blue curve represents the rolling mean step reward 
and spread around is the rolling standard deviation during 
training. The dotted red line indicates the point where e 
became 0.1 .

Training resu lts on mud terra in

0

■S -loo0on
-200 

CD 
Q _

1  -300
£
CD 
CL

-400

-500
0 100 200 300 400 500

Episodes

Fig. 8: The blue curve represents the rolling mean rewards per 
episode while training whereas, the green curve represents the 
rolling mean of steps taken by the agent in each episode.

(—500 to —600). This indicates that initially the actions are 
not optimized and the agent is not intelligent enough to reach 
the goal. After nearly 308 training episodes and 20,000 steps, 
the agent sufficiently improves the action policy. At that point, 
the decay in epsilon is stopped so that the agent can keep on 
exploring the environment. The training process is continued 
so the agent can optimize its policy further.

During training, the highest episodic reward of 72.65 was 
observed at 660 per episode. We stopped the training at 662 
episodes and 32967 steps. At the end of the training phase, the 
mean steps per episode are between 20 to 30, and the higher 
mean episodic reward is between 55 to 65. So, the proposed 
method robustly trains the agent to maximize the commutative 
reward and minimize the number of steps per episode.

B. Testing Results
We used multiple checkpoints to log the training rewards, 

steps per episode, Done flag, and episode counts for the target 
network. The highest future cumulative reward Gt implies

Testing results on mud terrain

100

CD-o 80 o (£2 'd
CD
-  60
CDCL
-o
|  40
CD
CL

20

0 10 20 30 40
Episodes

Fig. 9: This illustrates the testing learned policy on mud 
terrain, the blue curve represents the rolling mean rewards per 
episode whereas, the green curve represents the rolling mean 
of steps taken by the agent in each episode.

that the particular episode carries the best weights among the 
previous ones. We tested the learned policy for 50 episodes, 
as shown in Fig. 9. During testing of mud-terrain, the agent 
reached the goal point successfully with a high cumulative 
reward in less than 80 steps. It can be assessed from Fig. 8, 
that the episodic reward during the initial training phase 
is approximately —500. However, after learning the optimal 
policy in mud-terrain, the snake robot reached a goal point in 
fewer steps and received a high cumulative reward when tested 
on the same terrain. This learned policy was also evaluated on 
various unknown environments: concrete, metallic, wooden, 
and default terrain available in the CoppeliaSim simulator. 
The test results in terms of steps per episode for various 
terrain is shown in Fig. 10. From the graph one can observe 
during testing, the agent reaches the goal point in all episodes 
except one, wood-terrain, where the agent could not reach 
the target. This result shows the efficiency and robustness 
of the proposed scheme to reach the goal point. Since, the 
agent was trained in a different environment and tested in 
a different environment. So one can argue that the proposed 
scheme shows promising results in an unknown environment.
We categorize the episodes into successful and unsuccessful.

100

80

Cl
60

40

20

Terrains Mean
reward

Mean
steps

Total time 
(minutes)

Efficiency
%

Concrete -3.88 24.55 45.89 100
Default 13.37 21.22 39.36 100
Metallic 7.95 23.00 43.34 100
Mud 38.74 16.92 32.46 100
Wooden 9.67 21.24 39.46 98

TABLE II: Illustration of testing results of learned policy 
on various terrains. On mud terrain, the agent reaches the 
goal location in a minimum number of steps and time, with 
maximum reward. The learned policy shows 100% efficiency 
on different terrains except for wooden terrain, where 98% 
efficiency is achieved.
A successful episode is the one in which the agent reached 
the goal point, while the efficiency is the ratio of the total 
number of successful episodes to all episodes. For training,
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Testing results of the proposed schem e on various terra ins R e f e r e n c e s

Episodes

Fig. 10: Illustration of the steps per episode while testing the 
learned policy on various terrains. Most of the time the agent 
reaches the goal position within 40 steps. Just in one episode 
of wooden terrain, the agent could not reach the goal position.

the efficiency was calculated after every 50 episode, while 
during the testing the efficiency was computed after every 
5 episodes. In Tab. II, we show the results of the proposed 
schemes tested on various unknown environments in terms 
of mean reward, mean steps, total time, and performance 
efficiency. From Tab. II, one can observe the agent converges 
more robustly in terms of mean step, total time, efficiency, and 
higher rewards when tested in mud-terrain. The test results of 
various unknown environments is also promising, and achieve 
test accuracy of 100% for concrete, metallic and default- 
terrain, and 98% accuracy in wooden-terrain. From Tab. II, 
we can argue that the proposed scheme has high efficiency in 
various unknown environments.

Y. C o n c l u s i o n

Motion planning for a snake robot (modular mechanisms) 
is a challenging task. Because of complex control tasks, the 
model-based methods are not robust to control the robot 
adaptively in a challenging environment. We propose a double- 
DQN based scheme to optimize the gait selection of a snake 
robot; to reach the random goal point in an unknown environ-
ment in a minimum number of steps. When it is trained on 
mud-terrain and tested on various terrains like mud, metallic, 
default, and wooden-terrain in CoppeliaSim, the proposed 
learning-based scheme shows promising performance effi-
ciency on various unknown environments without changing the 
parameters. In future, we are planning to work in a complex 
dynamic environment, like adding static, dynamic and vision- 
based object detection. Furthermore, the proposed scheme will 
be tested in an experimental setup to evaluate its performance.
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