
20
21

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 A

rti
fic

ia
l I

nt
el

lig
en

ce
 (

IC
A

I)
 |

97
8-

1-
66

54
-3

29
3-

1/
20

/$
31

.0
0

©
20

21
 I

EE
E

| D
O

I:
10

.1
10

9/
IC

A
I5

22
03

.2
02

1.
94

45
20

0

2021 International Conference on

Artificial Intelligence (ICAI)

Islamabad, Pakistan, April 05-07, 2021

Motion Planning for a Snake Robot using Double
Deep Q-Leaming

Semab Neimat Khan*1, Tallat Mahmood*1, Syed Izzat Ullah1, Khawar Ali1, Anayat Ullah1,2
Control, Automotive and Robotics Lab, National Centre of Robotics and Automation,

Rawalpindi, Pakistan.
department of Electronic Engineering, Balochistan University of IT, Engineering and Management Sciences,

Quetta, Pakistan.
Email:semabbuzdar@gmail.com, tallat.mahmd@gmail.com, syedizzatullah@gmail.com, khawar.mohazzam@gmail.com,

anayatullah.baloch @ googlemail.com

Abstract—Motion planning for a snake robot in an unknown
complex environment is a long-standing research problem be-
cause of the complex control of the modular mechanism. We
propose deep reinforcement learning-based novel framework for
motion planning. In this model-free framework, we propose a
double deep Q-leaming-based technique to learn the optimal
policy for reaching the goal point from a random start point; in
a minimum number of steps in various unknown environments.
In this approach, the agent learns to minimize the distance
between the current and goal positions by aligning its yaw
angle to the goal points through controlling multiple locomotive
gaits. For experimental evaluation, we trained and tested the
model in obstacle-free terrains. For training, we selected the
model on the mud-terrain and tested for 50 episodes on five
different terrains concrete, default, metallic, mud, and wooden.
From simulation results, we observe the learned-optimal policy
shows promising results for all unknown environments with
a performance efficiency of 100% for all terrains except the
wooden-terrain where it fails for only one episode and achieves
98% efficiency.

Index Terms—Double deep Q learning, Experience replay
memory, Model free, Motion planning, Off-policy, Snake robot.

I . I n t r o d u c t i o n
Increasingly robotics is being applied to real-world prob-

lems, be it industrial, defense, or civilian applications. The
robots help people to increase efficiency as well as the quality
of work. Various types of robots have been developed in the
last few decades, but recently bio-inspired robots [1] have
caught great attention of the research community done for
their agility and unique physical capabilities that allows them
to navigate and transverse varied environments. Among the
bio-inspired robots, the limbless robots (a snake robot) have a
diverse range of applications because of their high agility and
adaptability. The idea of a snake robot was first introduced by
Prof. Hirose [2] and its mechanics were first described in [3].

The snake robots are designed as modular mechanisms
to achieve the agility and adaptability of their biological
counterparts [4]. The high flexible modular joints with many
Degrees of Freedom (DoF) assist them to change their shape
and navigate into a highly cluttered environment. However,
this modularity comes with its challenges. The control o f such

* Equal contribution of the authors.

a highly maneuverable robot requires controlling a lot o f joint
actuators and considering their physical constraints for motion
control.

Over the past many years a lot of work has been done in
snake locomotion (gait design) focusing on low-level control
inputs to individual joints using sinusoid-based methods [2],
dynamics-based methods [5], and central pattern generator
based methods [6]. These gaits have rhythmic functions that
change a snake robot’s shape in the form of a wave propagating
along its body. An approach presented in [7], glued high-level
motion planner and low-level control for a snake robot and
accomplished motion planning using conventional algorithms.
Their algorithm lacked results for different terrains and envi-
ronmental adaptability. The complex control task includes the
internal regulation of body joints and external interaction with
the ground. Therefore, the model-based methods usually fail
to control the robots adaptively in a challenging environment
[8].

Hence, there exists a need for motion planning algorithms
that work independently of the underlying robot’s physical
nuances and are robust to environmental changes. Some recent
work using Reinforcement Learning (RL) for path planning [9]
& [10] shows promising results as adaptive motion planners
in robotics. An object tracking using deep-RL has been
presented in [11] and accomplish robust results in a dynamic
environment.

Therefore, RL-framework provides a direction, and we
propose a novel deep-RL-based algorithm for the motion
planning of a snake robot. In the proposed technique, we use
a double Deep Q-network (double-DQN) for motion planning.
The double-DQN is a model-free RL-algorithm, which reduces
the overestimation and divergence issues of Q-network [12] &
[13], and achieves promising results on various tasks [14].

The main objective is to reach the goal point in a minimum
number of steps. If the direction of the snakehead is toward the
goal point, then it finds the shortest distance. Therefore, we
consider the respective angle between the heading direction of
the snake and the goal point as state-space. To improve the
efficiency of the RL framework, we significantly reduce the
state space, which helps in the convergence of our RL-based
controller, and is evident from the experimental results. Based

978-1-6654-3293-1/21/$31.00 © 2021 IEEE

264

on the respective angle, the artificial agent (double deep Q-
leaming) learns the optimal policy to select the specified gait to
reach the goal point in a minimum number of steps. To verify
the efficiency and robustness of the proposed algorithm, we
trained our model in mud terrain and tested it on five different
unknown terrains of the CoppeliaSim simulator. In a series of
simulated experiments, we demonstrated the effectiveness of
our proposed controller in varied environmental conditions and
its resilience based on mean-steps and performance efficiency.
From the experimental results, it is evident that the agent
reaches the goal point with a performance efficiency of 100%
(tested for 50 episodes) in concrete, default, metallic, and mud-
terrain using the learned policy. While it fails on one episode
of the wooden terrain, where the efficiency is 98% .

II. B a c k g r o u n d

A. Reinforcement Learning Framework
A Reinforcement Learning (RL) system learns how an

agent achieves its goal by trial-and-error interactions with
the environment [12]. The agent based on the observations,
interacts with the environment by performing an action. After
the action is performed in a given state and a new state is
achieved, the RL agent receives some reward; a numerical
value R G R. The main objective of the RL agent is to
learn the actions, which will maximize the future cumulative
rewards (long-term expected return) when starting from some
initial state and proceeding to a terminal state. Hence, the
agent only explores the actions which have the highest future
rewards, without expressing which actions to take.

Fig. 1: Illustration of agent-environment interaction in RL
framework. Where St represents the state of an agent at time
step t, based on observations selects an action At and receives
a reward Rt+i after transiting to a new state St+1.

A general RL problem is formulated as a discrete time
stochastic process in which an agent interacts with its en-
vironment at each time step; t = 0 ,1 ,2 ,___The agent at
time step t at the environment’s state St £ S (<S is a finite
set o f states) and based on observations selects an action
At G .A(s) (^4(s) a finite set of actions), as illustrated in Fig. 1.
After one time step, as a consequence of its action, the agent
receives a numerical reward, Rt+i G R C R and, transitions
into a new state St+1- Where St and At are the random
variables having well defined discrete probability distributions.
For a specific value of these random variables s' G S and
a' G A, there is a probability of those values occurring at

time t. If the sequence of rewards received after time step t
is denoted as Ri+i, R 1+2, R l+3, • • •, then expected discounted
return denoted Gt is defined as some specific function of the
rewards sequences as:

G t=R t+1 + l R t+2 + 7 2^t+3 + • • •
=Rt+i + i G t + i , (1)

where 7 G [0,1] is a discount rate or factor, which defines
the short and farsightedness of the agent. While an equal sign
with a dot (=) represents equivalent by definition.

One of the novel technique in RL is Temporal Difference
(TD) learning [12]. TD methods learn directly from raw expe-
rience without having the environment’s model, update estima-
tions based on different learned estimates, without waiting for
an outcome [15]. TD and optimal control [16] are combined
in Q-leaming [17]. The optimal control finds a mapping that
prescribes actions based on measured environmental states to
optimizes some long-term rewards. For estimation of optimal
value, Q-leaming algorithm builds the action-value function,
a primary part of reinforcement learning [17].

B. Q-Leaming
A sequential decision problem can be solved by learning the

estimated optimal values of each action, defined in terms of
the expected sum of future reward Gt . The value of an action
a in a state s (Qn(s , a)) by following the policy 7r is defined
as:

Qn(s,a)=E^[Gt\St = s ,A t = a], V s e S , a e A . (2)
The optimal policy can be computed from the optimal values
(Q*(s, a) = m axQ x (s ,a)) by selecting the highest value7T
action in each state.

The optimal action values (estimates) can be learned by a Q-
leaming algorithm [17], a form of off-policy TD learning [15].
The off-policy learning evaluates and improves one policy and
selects an action based on another policy. For many complex
robotic problems, the computation of action values for all
states is a complicated task. Therefore, a parametrized value
function Q (s,a ;w) can be incorporated, where w indicates
the parameters. The Q-leaming update parameters, after taking
an action At in-state St and transition to a new state St+i
while receiving a reward Rt+i, is:

w t+i = w t + a (R t+i + 7 max Q(St+i ,a ;w t)
' a

- Q (S t ,A t ;w t))V WtQ{Su At ;w t), (3)

where a represents a learning rate. While the target is repre-
sented as:

YtQ= R t+i+'r^aax.Q(St+i ,a ; w t). (4)
a

The max operator in Eq. 4 expresses the Q-leaming algorithm
chose the greedy values, which results in overoptimistic value
estimation.

C. Double Q-Learning
To avoid the overestimation problem of Q-leaming, double

Q-leaming algorithm is presented in [18]. It decomposes the
max operation of the target into action selection and action

265

evaluation. In double Q-leaming algorithm, two value estima-
tion functions learn from experience by randomly updating
one of the value estimation functions. Therefore, it contains
two sets of weights, w t and w 't . For each update, one set of
weights compute the greedy policy while the other compute
its value. The target of double Q-learning is presented as:

Y ^°meQ= R t+1 + 7<3(St+i, argmax<2 (Si+i, o; w t) ;w 't)
a

(5)
For Eq. 5, one can observe that action is selected, in the
argmax, from online weights w t . Which represents the Q-
leaming estimates the value from a greedy policy. While the
double Q-learning uses a second set of weights w 't to evaluate
the value of this greedy policy. However the second set of
weights are updated symmetrically by switching the roles of
w t and w 't . The double Q-leaming avoids the overestima-
tion problem, but combining model-free RL algorithms (Q-
leaming) with non-linear function approximation may cause
the Q-leaming algorithm to diverge, because of the correlation
between samples and non-stationary targets [13]. To solve
these issues the Deep Q-Network (DQN) has been presented
in [14].

D. Deep Q-Networks

With the recent improvement in deep neural networks, a
novel artificial agent termed DQN has been presented in [14].
DQN is a multi-layered neural network, which generates a
vector of action values Q(s, •; w) for a given state s, while w
represents the parameter or weights of the network. The neural
network maps n-dimensional state space Mn to m-dimensional
action space Mm. To resolve the divergence problem of Q-
leaming, the DQN uses a fixed target network along with
experience replay. The experience replay addresses the issue of
correlation. To improve the stability issue, for multiple updates
(iterations), fixed target parameters or weights w \ar are used
in the target value calculation, the weights are being updated
with w t . The target of DQN is then:

Y DQN= R t+1+ 'ym a xQ (S t+ i,a ;w lar). (6)
a

To integrate the experience replay, the observed transitions are
stored in the replay memory for some time and the network
weights are updated by uniformly sampled values from this
memory. From Eq. 6, one can observe the max operator makes
the deep Q-leaming algorithms to select overestimated values.

E. Double-DQN

Double Q-leaming algorithm reduces the overestimation
problem while the DQN controls the divergence issue. There-
fore, by combining both Double Q-leaming and DQN, a new
algorithm has been presented in [19], referred to as Double-
DQN. The double-DQN uses two identical neural networks,
the online and the target network. The double-DQN evaluates
the greedy policy by an online network while using the target
network of DQN to estimate its value. The target of double-
DQN is presented as:

Y ? oMeDQN± R t+1+ 'rQ (St+1,axgm axQ (S t+1, a ;w t); w * ^)
a

(7)
In contrast to DQN, the Double DQN has a target network with
the parameter w \ar, which evaluates the quality of the actions.
The Q-network computes the greedy policy with parameter
w t . In comparison to the Double Q-leaming (Eq. 5), the
weights of the second network w 't are replaced with the
parameters of the target network w \ar for the evaluation of
the current greedy policy. The update to the target network is
the same as for the DQN and contains a periodic copy of the
online network.

III. P r o p o s e d M e t h o d o l o g y

We propose an RL-based scheme for motion planning of
a snake robot (agent) using the Double-DQN. The main
objective of the agent is to reach the goal point (an indoor
plant in our case) from its current location, using various
locomotive gaits, in minimum time steps. The goal point Q
and current location P is shown as a big green dot and a
big red dot, respectively, in Fig. 2. To achieve this objective,

Fig. 2: The points P (p x ,py) and Q(qx ,qy) define the current
position of the snake robot and goal respectively. The angle
P is the respective angle between the snake’s current heading
vector H and optimal heading vector D . The 6 represents the
angle between vector D and reference x-axis.

we use the Double-DQN algorithm presented in [19] using a
linear e-greedy policy, in which e has value in range [0, 1] and
decays linearly from to e/. At each time step, we generate
a random number between (0, 1) from a uniform distribution.
If this random number is less than the current value of e, the
agent takes a random action a from the available action space
A. Otherwise, we pass the current state s £ S to the online
network, and the agent takes the action a having the maximum
state-action value Q (s,a). In response to action a, the agent
moves to a new state s' and receives a reward R t+i from

266

the environment. At each time step, the tuple (s, a ,R t+ i , s r),
referred to as a transition, and a Done flag is stored in the
Experience Replay Memory(ERM). Where the Done flag is
a Boolean variable, which indicates the termination of an
episode. At each time step t, a batch of transitions is taken
from the ERM, and weights of the online network of double-
DQN are updated using Eq. 3. So the action policy 7r is
updated to i t ' , as shown in Fig. 3. In the proposed scheme,

Fig. 3: Illustration of double DQN training process. The agent
observes the current state s, takes an action a using policy
7r, transits to the next state s', receives a reward R t+1 from
the environment and Done flag stores episodes’s completion
information. All these transitions are logged in the ERM. At
each step a batch of transitions is used, to update the agent’s
policy 7r.

we use ¡3 to formulate the states of the agent. Where P is the
angle between the snake heading vector H (red vector) and
vector D (green vector), as shown in Fig. 2, and computed

P = 6 — yaw (8)

Here yaw is the angle between the vector H and x-axis
provided by the simulator. Whereas, 0 is the angle of vector
D with respect to the x-axis and computed as:

6 = tan-1* t ^ - . (9)
Q x - P x

In reinforcement learning, a low dimensional state space S
is computationally robust compared to a high dimensional
state-space. As in our case, the respective angle P has infinite
values in the given range [—180° ~ 180°], which leads to high
complexity. Moreover, the locomotive gaits can not respond to
minute changes (less than 1°) in respective angles. To solve
this problem, we map the value of the snake heading direction
using the continuous values of angle ft to integer i using:

i = m =

—180 < P < 180 G R and
l +6° where

0 < i < 120 G Z0+
(10)

Furthermore, we assign a one dimensional vector V 1 for every
integer i of dimension 1 x 121, as shown in Fig. 4. The

Respective Angle :

/3 -h-------------------------1-
-180 0

Onto — mapping

----1—
+180

Vector : V ’ 0 0 0.5 0.75 1 0.75 0.5 0 0

V j V \ - V j - 2 U j - 1 V j V'j + 1 ^ + 2 - ^ 1 9 ^ 1 2 0

1 x 121

Fig. 4: The illustration of onto-mapping of respective angle P
to the Vector V*. The domain of this mapping function is of
infinite dimension (—180 < P < +180 G R) while the range
is finite (121 vectors V*, each of dimension [1 x 121]). The
Vj represents the j th component of the vector V*.

component of vector V* can be represented as vj where j
represents the index of that component (0 < j < 120 G Z0+)
of vector V 1. The values of these components are computed
as:

1, if j = i
0.75, if j = i ± 1
0.5, if j = i ± 2
0, otherwise

After computing the vector V \ we produce a 2D array of
dimension 6 x 121 by replicating the vector V 1 6 times for a
respective angle p of a single state. The set of all these 2D
arrays builds our state-space S, so the agent has 121 discrete
states.

The objective of our agent is to minimize the angle P by
readjusting its yaw angle and trying to reach the goal point
using various locomotive gaits, in a minimum number of steps
as shown in Fig. 2. To simplify the complexity of motion, we
use only three locomotive gaits of the snake robot as action-
space A: rectilinear, right-serpentine, and left-serpentine [3].
The target of the agent is to learn the optimal action for
locomotion to reach the goal point, with the highest rewards
received after each action.

After an action a is performed the agent moves to a new
location, therefore the distance from the goal location changes
which in turn changes the angle p. If the agent receives a
reward or penalty based on P, the agent takes the action
to remain in the direction of the goal location. After the
agent’s heading aligns with the direction of the goal point,
the agent only actuates the forward locomotive gait, to reach
the goal point by following the shortest possible path. Hence,
we compute the reward function Rt based on respective angle
P defined as:

R t

100, if terminal state

otherwise
(12)

267

(a) CoppeliaSim environment in (b) CoppeliaSim environment in
which snake robot and goal point which snake robot and goal point
can be seen on mud terrain. can be seen on metallic terrain.

Fig. 5: CoppeliaSim environment in which snake robot and
goal point can be seen on different terrains.

The vicinity of one meter to the goal point is considered as the
terminal state of the episode, and the agent receives a positive
reward of 100. For all other states, it is penalized based on
the respective angle ¡3. It receives a minimum penalty when
the value of /J is a small and high penalty for higher value of
f3. From these reward values, the agent evaluates the actions
and responds to the environment accordingly.

IV. E x p e r i m e n t a l E v a l u a t i o n

We used a robot simulator ’’CoppeliaSim V — 4.1” for
our experimental evaluation (for more details see [20]). Cop-
peliaSim is a well-known physics simulator among the robotics
community which provides flexibility to create robots of
various kinds by importing pre-designed 3D-CAD models.
For our experimental evaluation, we used an obstacle-free
environment of 4 x 6 meters. It comprises of a snake robot
as the agent and an indoor plant as a goal point. The hyper-
redundant structure of our snake robot consists of ten modular
joints, which are segregated into three groups; head, body, and
tail. We performed the training on the mud-terrain to mimic
the real-world environment, as shown in Fig. 5a. We used two
identical neural networks, online network and target network,
for double-DQN. The neural network consists of a convolution
layer with 32 kernels of size 2 x 2 , one flatten layer of size
1 x 5760, one fully connected layer of 64 neurons, and an
output layer as shown in Fig. 6. The size of the output layer
is equal to the number of actions available (three in our case).

Moreover, we used stride of 2 x 2 with “relu” as the
activation function and “Adam” as the optimizer. At the output
layer, we used a linear activation function, which gives the
estimated Q(s, a) value for each state-action pair. We used a
discount factor (7) of 0.98 and a learning rate (a) of 0.00025
for target policy Eq. 7 and weights are updated as mentioned
in Eq. 3. We used linear e-greedy policy which is updated
after each step, with an initial value e* = 1 and final value
€f = 0.1. The target network was updated after 25 episodes,
while an episode is the maximum number of steps allowed to
reach the goal point. For experimental evaluation, we selected
random samples in batches of 64, from ERM, with maximum
samples of 30,000, and minimum samples of 500. In this

Fig. 6: Illustration of the network architecture which consists
of input layer, hidden layers and an output layer of dimensions
(1@6 x 121), (32@3 x 60, l x 5760, 1 x 64) and (1 x 3)
respectively.

experiment, we used 100 steps per episode. All the hyper-
parameters of Double-DQN are shown in Tab. I. We developed

Param eter Value
Activation function for hidden layers relu
Activation function for output layer linear
Optimizer Adam
Discount factor (7) 0.98
Learning rate (a) 0.00025
Initial epsilon (e^) 1
Final epsilon (ef) 0.1
Update epsilon (in steps) 1
Target network update frequency 25
Minimum replay memory size 500
Replay memory size 30000
Batch size 64
Maximum steps per episode 100

TABLE I: The hyperparameters used to train the double-DQN.

the neural network for training the Double-DQN in Python
using TensorFlow and Keras as the backend framework. The
training was carried out on an Intel Core i5-4690 CPU (with
4 processing cores each running at 3.5 GHz) and 4GB RAM.
The training process took about 22 hours to complete, details
can be found in the following section.
A. Training Results

We trained the robot using CoppeliaSim in mud-terrain with
the parameters presented in Tab. I. The agent improved its
action policy as the training proceeded, depicted in Fig. 7.
The dark blue curve in Fig. 7 represents the rolling mean
of the step rewards while the spread around it is the standard
deviation (Std) of the step rewards. As e decays, the mean and
Std of step reward increase, since the agent is nearing the goal
point. After 20,000 training steps, shown as a red dotted line,
the value of e reaches 0.1 and the mean reward curve becomes
stable. This stable reward indicates that the agent has reached
the goal point. The learning process of the agent is shown in
Fig. 8. The blue and green curves indicate the rolling mean
reward per episode and steps per episode, respectively. The
negative slope of the green curve shows that, on average, the
agent reaches the goal point in fewer steps as the number of
episodes increases. The initial positive slope of the blue curve
expresses the increase of reward per episode.

During the initial phase of the training, the number of steps
per episode is high (90—100) leading to lower episodic reward

268

Fig. 7: The blue curve represents the rolling mean step reward
and spread around is the rolling standard deviation during
training. The dotted red line indicates the point where e
became 0.1 .

Training resu lts on mud terra in

0

■S -loo0on
-200

CD
Q _

1 -300
£
CD
CL

-400

-500
0 100 200 300 400 500

Episodes

Fig. 8: The blue curve represents the rolling mean rewards per
episode while training whereas, the green curve represents the
rolling mean of steps taken by the agent in each episode.

(—500 to —600). This indicates that initially the actions are
not optimized and the agent is not intelligent enough to reach
the goal. After nearly 308 training episodes and 20,000 steps,
the agent sufficiently improves the action policy. At that point,
the decay in epsilon is stopped so that the agent can keep on
exploring the environment. The training process is continued
so the agent can optimize its policy further.

During training, the highest episodic reward of 72.65 was
observed at 660 per episode. We stopped the training at 662
episodes and 32967 steps. At the end of the training phase, the
mean steps per episode are between 20 to 30, and the higher
mean episodic reward is between 55 to 65. So, the proposed
method robustly trains the agent to maximize the commutative
reward and minimize the number of steps per episode.

B. Testing Results
We used multiple checkpoints to log the training rewards,

steps per episode, Done flag, and episode counts for the target
network. The highest future cumulative reward Gt implies

Testing results on mud terrain

100

CD-o 80 o (£2 'd
CD
- 60
CDCL
-o
| 40
CD
CL

20

0 10 20 30 40
Episodes

Fig. 9: This illustrates the testing learned policy on mud
terrain, the blue curve represents the rolling mean rewards per
episode whereas, the green curve represents the rolling mean
of steps taken by the agent in each episode.

that the particular episode carries the best weights among the
previous ones. We tested the learned policy for 50 episodes,
as shown in Fig. 9. During testing of mud-terrain, the agent
reached the goal point successfully with a high cumulative
reward in less than 80 steps. It can be assessed from Fig. 8,
that the episodic reward during the initial training phase
is approximately —500. However, after learning the optimal
policy in mud-terrain, the snake robot reached a goal point in
fewer steps and received a high cumulative reward when tested
on the same terrain. This learned policy was also evaluated on
various unknown environments: concrete, metallic, wooden,
and default terrain available in the CoppeliaSim simulator.
The test results in terms of steps per episode for various
terrain is shown in Fig. 10. From the graph one can observe
during testing, the agent reaches the goal point in all episodes
except one, wood-terrain, where the agent could not reach
the target. This result shows the efficiency and robustness
of the proposed scheme to reach the goal point. Since, the
agent was trained in a different environment and tested in
a different environment. So one can argue that the proposed
scheme shows promising results in an unknown environment.
We categorize the episodes into successful and unsuccessful.

100

80

Cl
60

40

20

Terrains Mean
reward

Mean
steps

Total time
(minutes)

Efficiency
%

Concrete -3.88 24.55 45.89 100
Default 13.37 21.22 39.36 100
Metallic 7.95 23.00 43.34 100
Mud 38.74 16.92 32.46 100
Wooden 9.67 21.24 39.46 98

TABLE II: Illustration of testing results of learned policy
on various terrains. On mud terrain, the agent reaches the
goal location in a minimum number of steps and time, with
maximum reward. The learned policy shows 100% efficiency
on different terrains except for wooden terrain, where 98%
efficiency is achieved.
A successful episode is the one in which the agent reached
the goal point, while the efficiency is the ratio of the total
number of successful episodes to all episodes. For training,

269

Testing results of the proposed schem e on various terra ins R e f e r e n c e s

Episodes

Fig. 10: Illustration of the steps per episode while testing the
learned policy on various terrains. Most of the time the agent
reaches the goal position within 40 steps. Just in one episode
of wooden terrain, the agent could not reach the goal position.

the efficiency was calculated after every 50 episode, while
during the testing the efficiency was computed after every
5 episodes. In Tab. II, we show the results of the proposed
schemes tested on various unknown environments in terms
of mean reward, mean steps, total time, and performance
efficiency. From Tab. II, one can observe the agent converges
more robustly in terms of mean step, total time, efficiency, and
higher rewards when tested in mud-terrain. The test results of
various unknown environments is also promising, and achieve
test accuracy of 100% for concrete, metallic and default-
terrain, and 98% accuracy in wooden-terrain. From Tab. II,
we can argue that the proposed scheme has high efficiency in
various unknown environments.

Y. C o n c l u s i o n

Motion planning for a snake robot (modular mechanisms)
is a challenging task. Because of complex control tasks, the
model-based methods are not robust to control the robot
adaptively in a challenging environment. We propose a double-
DQN based scheme to optimize the gait selection of a snake
robot; to reach the random goal point in an unknown environ-
ment in a minimum number of steps. When it is trained on
mud-terrain and tested on various terrains like mud, metallic,
default, and wooden-terrain in CoppeliaSim, the proposed
learning-based scheme shows promising performance effi-
ciency on various unknown environments without changing the
parameters. In future, we are planning to work in a complex
dynamic environment, like adding static, dynamic and vision-
based object detection. Furthermore, the proposed scheme will
be tested in an experimental setup to evaluate its performance.

A c k n o w l e d g m e n t

This research is conducted at Control Automotive and
Robotics Lab (CARL-BUITEMS), funded by National Center
of Robotics and Automation (NCRA) with the collaboration
of Higher Education Commission (HEC) of Pakistan.

[1] R Dario, “Biorobotics,” Journal o f the Robotics Society o f Japan, vol. 23,
no. 5, pp. 552-554, 2005.

[2] T. Owen, “Biologically inspired robots: Snake-like locomotors and
manipulators by shigeo hirose,” Robotica, vol. 12, no. 3, pp. 282-282,
1993.

[3] J. Gray, “The mechanism of locomotion in snakes,” Journal o f Experi-
mental Biology, vol. 23, no. 2, pp. 101-120, 1946.

[4] I. D. Walker and M. W. Hannan, “A novel elephant’s trunk robot,” in
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, Atlanta, GA, USA, September 1999, pp. 410-415.

[5] G. S. Miller, “The motion dynamics of snakes and worms,” in 15th
annual conference on Computer graphics and interactive techniques,
New York, NY, United States, August 1988, pp. 169-173.

[6] Z. Bing, L. Cheng, G. Chen, F. Rohrbein, K. Huang, and A. Knoll, “To-
wards autonomous locomotion: Cpg-based control of smooth 3d slither-
ing gait transition of a snake-like robot,” Bioinspiration & biomimetics,
vol. 12, no. 3, p. 035001, 2017.

[7] R. L. Hatton, R. A. Knepper, H. Choset, D. Rollinson, C. Gong,
and E. Galceran, “Snakes on a plan: Toward combining planning
and control,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 5174-5181.

[8] Z. Bing, C. Lemke, Z. Jiang, K. Huang, and A. Knoll, “Energy-efficient
slithering gait exploration for a snake-like robot based on reinforcement
learning,” 28th International Joint Conference on Artificial Intelligence,
August 2019.

[9] F. Morbidi and G. L. Mariottini, “Active target tracking and cooperative
localization for teams of aerial vehicles,” IEEE transactions on control
systems technology, vol. 21, no. 5, pp. 1694-1707, 2012.

[10] W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang, and Y. Wang, “End-to-end
active object tracking and its real-world deployment via reinforcement
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 42, no. 6, pp. 1317-1332, 2019.

[11] Z. Bing, C. Lemke, F. O. Morin, Z. Jiang, L. Cheng, K. Huang, and
A. Knoll, “Perception-action coupling target tracking control for a snake
robot via reinforcement learning,” Frontiers in Neurorobotics, vol. 14,
p. 79, 2020.

[12] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT press Cambridge, Massachusets, USA, 2018, vol. 2.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, Lake Tahoe, USA, December
2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[15] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9-44, 1988.

[16] J. K. Williams, “Reinforcement learning of optimal controls,” in Artifi-
cial intelligence methods in the environmental sciences. Springer, 2009,
pp. 297-327.

[17] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, United Kingdom, 1989.

[18] H. Hasselt, “Double q-leaming,” Advances in neural information pro-
cessing systems, vol. 23, pp. 2613-2621, 2010.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-leaming,” AAAI Conference on Artificial Intelligence,
2015.

[20] E. Rohmer, S. P. Singh, and M. Freese, “Coppeliasim (formerly v-
rep): a versatile and scale-able robot simulation framework,” in Proc. o f
The International Conference on Intelligent Robots and Systems (IROS),
Tokyo, Japan, November 2013.

270

